Electron-Spin-Resonance Spectrum of Mn 2+ in β-Ga 2 O 3

The electron-spin-resonance spectrum of ${\mathrm{Mn}}^{2+}$ has been investigated in monoclinic $\ensuremath{\beta}\ensuremath{-}{\mathrm{Ga}}_{2}{\mathrm{O}}_{3}$ at 24 kMc/sec. It was found that the spectrum consists of a set of lines corresponding to a single type of environment. This spectrum (including the fine and $\ensuremath{\Delta}m=0$ hyperfine structure) is satisfactorily described by the spin Hamiltonian for ${\mathrm{Mn}}^{2+}$ in a rhombic crystal field with the following derived constants: ${A}_{z}=\ensuremath{-}87.7\ifmmode\pm\else\textpm\fi{}0.2$ G; ${A}_{y}=\ensuremath{-}85.6\ifmmode\pm\else\textpm\fi{}0.2$ G; ${g}_{z}=2.002$; ${g}_{y}=2.007$; $D=545.0$ G; $E=124.3$ G. The $y$ crystal-field axis is along the monoclinic axis (b) and the $z$ crystal-field axis makes an angle of 18\ifmmode^\circ\else\textdegree\fi{} with the $c$ crystal axis ($agc$). Forbidden $\ensuremath{\Delta}m=\ifmmode\pm\else\textpm\fi{}1,\ifmmode\pm\else\textpm\fi{}2$ hyperfine transitions were also observed. From the separations between the $\ensuremath{\Delta}m=\ifmmode\pm\else\textpm\fi{}1$ doublets, a value of ${Q}^{\ensuremath{'}}=+0.9\ifmmode\pm\else\textpm\fi{}0.2$ G was obtained. On the basis of the axial crystal fields inferred from the measured values of ${Q}^{\ensuremath{'}}$ in $\ensuremath{\beta}\ensuremath{-}{\mathrm{Ga}}_{2}{\mathrm{O}}_{3}$ and in other oxide materials, it appears that the calculated crystal-field contribution to the $D$ parameter of ${\mathrm{Mn}}^{2+}$ does not explain the experimental results.

[1]  H. H. Tippins Optical and Microwave Properties of Trivalent Chromium inβ-Ga2O3 , 1965 .

[2]  G. Burns,et al.  Spin Hamiltonian Parameter D versus Axial Crystal Field for S-State Ions , 1963 .

[3]  R. Lacroix,et al.  Action d'un champ cristallin axial sur l'ion Fe3+ , 1962 .

[4]  J. Schneider,et al.  Paramagnetische Resonanz von Mn++-Ionen in synthetischen und natürlichen ZnO-Kristallen (I) „Erlaubte” Übergänge ΔΜ = ± 1, Δm = 0 , 1962 .

[5]  V. Folen "Forbidden" Transitions in the Paramagnetic Resonance ofMn++inAl2O3 , 1962 .

[6]  D. F. Johnston,et al.  A calculation of the ground-state splitting for Mn2+ ions in a cubic field , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[7]  S. Geller,et al.  Crystal Structure of β‐Ga2O3 , 1960 .

[8]  J. Kondo Electron Spin Resonance of Mn++ Ion in Ionic Crystals , 1960 .

[9]  E. H. Dearborn,et al.  The growth of single crystals of magnetic garnets , 1958 .

[10]  Hiroshi Watanabe On the Ground Level Splitting of Mn++ and Fe+++ in Nearly Cubic Crystalline Field , 1957 .

[11]  J. A. Kohn,et al.  Characterization of β-Ga2O3 and its Alumina Isomorph, θ-Al2O3 , 1957 .

[12]  J. S. V. Wieringen Paramagnetic resonance of divalent manganese incorporated in various lattices , 1955 .

[13]  M. Pryce Spin-Spin Interaction within Paramagnetic Ions , 1950 .

[14]  J. V. Vleck,et al.  LXXXIII. The theory of the paramagnetic rotation and susceptibility in manganous and ferric salts , 1934 .