A random‐walk simulation of the Schrödinger equation: H+3
暂无分享,去创建一个
[1] J. Hirschfelder. The Energy of the Triatomic Hydrogen Molecule and Ion, V , 1938 .
[2] S. Vajda,et al. Symposium on Monte Carlo Methods , 1957, The Mathematical Gazette.
[3] J. Polanyi,et al. Ab Initio SCF–MO–CI Calculations for H−, H2, and H3+ Using Gaussian Basis Sets , 1970 .
[4] W. Lester,et al. Some Aspects of the Coulomb Hole of the Ground State of H3 , 1966 .
[5] Calculations of potential energy surfaces in the complex plane. IV. Ab initio surfaces for H3 , 1974 .
[6] R. Christoffersen. Configuration‐Interaction Study of the Ground State of the H3+ Molecule , 1964 .
[7] C. Bender,et al. Avoided intersection of potential energy surfaces: The (H+ + H2, H + H2+) system , 1973 .
[8] R. D. Poshusta,et al. Correlated Gaussian wavefunctions for H3 , 1973 .
[9] W. Kutzelnigg,et al. The hartree-fock and the correlation energies of the H + 3 ion and their dependence on the nuclear configuration , 1967 .
[10] N. Wiener,et al. Wave Mechanics in Classical Phase Space, Brownian Motion, and Quantum Theory , 1966 .
[11] S. Ulam. A collection of mathematical problems , 1960 .
[12] M. Donsker,et al. A Sampling Method for Determining the Lowest Eigenvalue and the Principal Eigenfunction of Schroedinger's Equation , 1950 .
[13] S. V. Lawande,et al. He and H−11S and 23S States Computed from Feynman Path Integrals in Imaginary Time , 1971 .
[14] L. J. Schaad,et al. Ab Initio Studies of Small Molecules Using 1s Gaussian Basis Functions. II. H3 , 1967 .
[15] N. Metropolis,et al. The Monte Carlo method. , 1949 .
[16] William H. Beyer,et al. Handbook of Tables for Probability and Statistics , 1967 .
[17] A. Einstein. Zur Theorie der Brownschen Bewegung , 1906 .