A random‐walk simulation of the Schrödinger equation: H+3

A simple random‐walk method for obtaining ab initio solutions of the Schrodinger equation is examined in its application to the case of the molecular ion H+3 in the equilateral triangle configuration with side length R=1.66 bohr. The method, which is based on the similarity of the Schrodinger equation and the diffusion equation, involves the random movement of imaginary particles (psips) in electron configuration space subject to a variable chance of multiplication or disappearance. The computation requirements for high accuracy in determining energies of H+3 are greater than those of existing LCAO–MO–SCF–CI methods. For more complex molecular systems the method may be competitive.

[1]  J. Hirschfelder The Energy of the Triatomic Hydrogen Molecule and Ion, V , 1938 .

[2]  S. Vajda,et al.  Symposium on Monte Carlo Methods , 1957, The Mathematical Gazette.

[3]  J. Polanyi,et al.  Ab Initio SCF–MO–CI Calculations for H−, H2, and H3+ Using Gaussian Basis Sets , 1970 .

[4]  W. Lester,et al.  Some Aspects of the Coulomb Hole of the Ground State of H3 , 1966 .

[5]  Calculations of potential energy surfaces in the complex plane. IV. Ab initio surfaces for H3 , 1974 .

[6]  R. Christoffersen Configuration‐Interaction Study of the Ground State of the H3+ Molecule , 1964 .

[7]  C. Bender,et al.  Avoided intersection of potential energy surfaces: The (H+ + H2, H + H2+) system , 1973 .

[8]  R. D. Poshusta,et al.  Correlated Gaussian wavefunctions for H3 , 1973 .

[9]  W. Kutzelnigg,et al.  The hartree-fock and the correlation energies of the H + 3 ion and their dependence on the nuclear configuration , 1967 .

[10]  N. Wiener,et al.  Wave Mechanics in Classical Phase Space, Brownian Motion, and Quantum Theory , 1966 .

[11]  S. Ulam A collection of mathematical problems , 1960 .

[12]  M. Donsker,et al.  A Sampling Method for Determining the Lowest Eigenvalue and the Principal Eigenfunction of Schroedinger's Equation , 1950 .

[13]  S. V. Lawande,et al.  He and H−11S and 23S States Computed from Feynman Path Integrals in Imaginary Time , 1971 .

[14]  L. J. Schaad,et al.  Ab Initio Studies of Small Molecules Using 1s Gaussian Basis Functions. II. H3 , 1967 .

[15]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[16]  William H. Beyer,et al.  Handbook of Tables for Probability and Statistics , 1967 .

[17]  A. Einstein Zur Theorie der Brownschen Bewegung , 1906 .