Toward Band n78 Shear Bulk Acoustic Resonators Using Crystalline Y-Cut Lithium Niobate Films With Spurious Suppression

This work presents the study of suspended Y-cut Lithium Niobate shear bulk acoustic resonators for wide band filter applications in the frequency range of 3.5-4.5GHz. The resonators consist of a Lithium Niobate film with Aluminum top interdigitated electrodes (IDE) and floating bottom metal plate. Through vertical electric field excitation, shear bulk acoustic waves are generated in each unit cell of the device functioning as a quasi-independent resonator. Measured devices at 3.7GHz having large relative resonance-antiresonance bandwidth of 16.7% (750MHz), with $2\mathrm {\Omega }$ impedance at resonance are presented. Suppression of higher order lateral harmonics through etching of trenches in the Lithium Niobate and geometric optimization is discussed. [2022-0205]

[1]  F. Zeng,et al.  Over GHz bandwidth SAW filter based on 32° Y-X LN/SiO2/poly-Si/Si heterostructure with multilayer electrode modulation , 2022, Applied Physics Letters.

[2]  B. Dubus,et al.  High Quality Factor Hybrid SAW/BAW Resonators , 2022, 2022 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS).

[3]  H. Atakan,et al.  Study of Thin Film LiNbO3 Laterally Excited Bulk Acoustic Resonators , 2022, Journal of Microelectromechanical Systems.

[4]  C. Cassella,et al.  A 5.3 GHz Al0.76Sc0.24N Two-Dimensional Resonant Rods Resonator With a kt2 of 23.9% , 2022, Journal of Microelectromechanical Systems.

[5]  J. Mateu,et al.  Towards a N77 Electroacoustic Filter Using Thin Films of Crystalline Y-cut Lithium Niobate , 2021, 2021 IEEE MTT-S International Microwave Filter Workshop (IMFW).

[6]  P. Perreau,et al.  4.2 GHz LiNbO3 Film Bulk Acoustic Resonator , 2021, 2021 IEEE International Ultrasonics Symposium (IUS).

[7]  Ruochen Lu,et al.  Near-Zero Drift and High Electromechanical Coupling Acoustic Resonators at > 3.5 GHz , 2021, IEEE Transactions on Microwave Theory and Techniques.

[8]  R. Aigner,et al.  Acoustic Wave Transversal Filter for 5G N77 Band , 2021, IEEE Transactions on Microwave Theory and Techniques.

[9]  P. Perreau,et al.  Lithium Niobate Film Bulk Longitudinal Wave Resonator , 2021, 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS).

[10]  L. Villanueva,et al.  Optimization of Inactive Regions of Lithium Niobate Shear Mode Resonator for Quality Factor Enhancement , 2021, Journal of Microelectromechanical Systems.

[11]  R. Olsson,et al.  Al0.68Sc0.32N Lamb wave resonators with electromechanical coupling coefficients near 10.28% , 2021 .

[12]  L. Villanueva,et al.  Thin Film Devices for 5G Communications , 2021, 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS).

[13]  G. Piazza,et al.  X-Cut Lithium Niobate-Based Shear Horizontal Resonators for Radio Frequency Applications , 2020, Journal of Microelectromechanical Systems.

[14]  J. Koskela,et al.  Crystalline Y-cut Lithium Niobate Layers for the Bulk Acoustic Wave Resonator (YBAR) , 2020, 2020 IEEE International Ultrasonics Symposium (IUS).

[15]  G. Piazza,et al.  Investigation of Damping and Ladder Filter Synthesis for 3 GHz 20% Scandium-Doped Aluminum Nitride Cross-Sectional Lame Mode Resonators , 2020, 2020 IEEE International Ultrasonics Symposium (IUS).

[16]  Shuji Tanaka,et al.  High Frequency Strip-Type Solidly-Mounted Shear Mode Bulk Wave Resonator Using X-LT , 2020, 2020 IEEE International Ultrasonics Symposium (IUS).

[17]  R. Olsson,et al.  Highly Doped AlScN 3.5 GHz XBAW Resonators with 16% k2eff for 5G RF Filter Applications , 2020, 2020 IEEE International Ultrasonics Symposium (IUS).

[18]  Shuji Tanaka,et al.  High Frequency Solidly Mounted Resonator Using LN Single Crystal Thin Plate , 2020, 2020 IEEE International Ultrasonics Symposium (IUS).

[19]  Y. Shuai,et al.  Mo/Ti multilayer Bragg reflector for LiNbO3 film bulk acoustic wave resonators , 2020 .

[20]  Ruochen Lu,et al.  Surface Acoustic Wave Devices Using Lithium Niobate on Silicon Carbide , 2020, IEEE Transactions on Microwave Theory and Techniques.

[21]  Y. Shuai,et al.  The thin film bulk acoustic wave resonator based on single-crystalline 43○Y-cut lithium niobate thin films , 2020 .

[22]  Ruochen Lu,et al.  A1 Resonators in 128° Y-cut Lithium Niobate with Electromechanical Coupling of 46.4% , 2020, Journal of Microelectromechanical Systems.

[23]  Shuji Tanaka,et al.  High frequency thickness expansion mode bulk acoustic wave resonator using LN single crystal thin plate , 2020, Japanese Journal of Applied Physics.

[24]  Andrew Clark,et al.  Super High-Frequency Scandium Aluminum Nitride Crystalline Film Bulk Acoustic Resonators , 2019, 2019 IEEE International Ultrasonics Symposium (IUS).

[25]  P. Perreau,et al.  Single-mode high frequency LiNbO3 Film Bulk Acoustic Resonator , 2019, 2019 IEEE International Ultrasonics Symposium (IUS).

[26]  Luis Guillermo Villanueva,et al.  Analysis of XBAR resonance and higher order spurious modes , 2019, 2019 IEEE International Ultrasonics Symposium (IUS).

[27]  Ruochen Lu,et al.  Advancing Lithium Niobate Based Thin Film Devices for 5G Front-Ends , 2019, 2019 IEEE MTT-S International Microwave Symposium (IMS).

[28]  W. Daniau,et al.  High-frequency surface acoustic wave devices based on epitaxial Z-LiNbO3 layers on sapphire , 2019, Applied Physics Letters.

[29]  Hans P. Friedrich,et al.  High Frequency LiNbO3 Bulk Wave Resonator , 2019, 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC).

[30]  I. Radu,et al.  New generation of SAW devices on advanced engineered substrates combining piezoelectric single crystals and Silicon , 2019, 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC).

[31]  C. Cassella,et al.  On the Coupling Coefficient of ScyAl1-yN-based Piezoelectric Acoustic Resonators , 2019, 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC).

[32]  Ming-Huang Li,et al.  Accurate Extraction of Large Electromechanical Coupling in Piezoelectric MEMS Resonators , 2019, Journal of Microelectromechanical Systems.

[33]  Tetsuya Kimura,et al.  Comparative Study of Acoustic Wave Devices Using Thin Piezoelectric Plates in the 3–5-GHz Range , 2019, IEEE Transactions on Microwave Theory and Techniques.

[34]  M. Rais-Zadeh,et al.  Coupled BAW/SAW Resonators Using AlN/Mo/Si and AlN/Mo/GaN Layered Structures , 2019, IEEE Electron Device Letters.

[35]  V. Plessky,et al.  5 GHz laterally‐excited bulk‐wave resonators (XBARs) based on thin platelets of lithium niobate , 2019, Electronics Letters.

[36]  R. Aigner,et al.  BAW Filters for 5G Bands , 2018, 2018 IEEE International Electron Devices Meeting (IEDM).

[37]  Robert Weigel,et al.  A Hybrid Acoustic-Wave Resonator and Lumped-Element Ladder Filter , 2018, 2018 IEEE International Ultrasonics Symposium (IUS).

[38]  Shuji Tanaka,et al.  Wideband acoustic wave resonators composed of hetero acoustic layer structure , 2018, Japanese Journal of Applied Physics.

[39]  Flavius V. Pop,et al.  Investigation of Electromechanical Coupling and Quality Factor of X-Cut Lithium Niobate Laterally Vibrating Resonators Operating Around 400 MHz , 2018, Journal of Microelectromechanical Systems.

[40]  Karri Ranta-aho,et al.  Spectrum for 5G: Global Status, Challenges, and Enabling Technologies , 2018, IEEE Communications Magazine.

[41]  Gianluca Piazza,et al.  Investigation of 20% scandium-doped aluminum nitride films for MEMS laterally vibrating resonators , 2017, 2017 IEEE International Ultrasonics Symposium (IUS).

[42]  Anming Gao,et al.  5 Ghz lithium niobate MEMS resonators with high FoM of 153 , 2017, 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS).

[43]  P. Muralt,et al.  Hybrid BAW/SAW AlN and AlScN thin film resonator , 2016, 2016 IEEE International Ultrasonics Symposium (IUS).

[44]  Songbin Gong,et al.  Elimination of Spurious Modes in SH0 Lithium Niobate Laterally Vibrating Resonators , 2015, IEEE Electron Device Letters.

[45]  Dimitrios Peroulis,et al.  Hybrid Acoustic-Wave-Lumped-Element Resonators (AWLRs) for High-$Q$ Bandpass Filters With Quasi-Elliptic Frequency Response , 2015, IEEE Transactions on Microwave Theory and Techniques.

[46]  Gianluca Piazza,et al.  Lithium Niobate on Silicon Dioxide Suspended Membranes: A Technology Platform for Engineering the Temperature Coefficient of Frequency of High Electromechanical Coupling Resonators , 2014, Journal of Microelectromechanical Systems.

[47]  S. Ballandras,et al.  3rd type of FBARs? , 2013, 2013 IEEE International Ultrasonics Symposium (IUS).

[48]  K. Daimon,et al.  S0 Mode Lamb Wave Resonators Using LiNbO3 Thin Plate on Acoustic Multilayer Reflector , 2013 .

[49]  A. Artieda,et al.  Electromechanical properties of Al0.9Sc0.1N thin films evaluated at 2.5 GHz film bulk acoustic resonators , 2011 .

[50]  Michio Kadota,et al.  5.4 GHz Lamb Wave Resonator on LiNbO3 Thin Crystal Plate and Its Application , 2011 .

[51]  M. Kadota,et al.  Properties of LiNbO3 Thin Film Deposited by Chemical Vapor Deposition and Frequency Characteristics of Film Bulk Acoustic Wave Resonator , 2011 .

[52]  K. Yamamoto,et al.  High-frequency lamb wave device composed of MEMS structure using LiNbO3 thin film and air gap , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[53]  C. Mazure,et al.  High piezoelectric properties in LiNbO3 transferred layer by the Smart Cut™ technology for ultra wide band BAW filter applications , 2008, 2008 IEEE International Electron Devices Meeting.

[54]  K. Suzuki,et al.  Single crystal FBAR with LiNbO3 and LiTaO3 piezoelectric substance layers , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[55]  Ruochen Lu,et al.  Microwave Acoustic Devices: Recent Advances and Outlook , 2021, IEEE Journal of Microwaves.

[56]  P. Muralt,et al.  Al0.83Sc0.17N Contour-Mode Resonators With Electromechanical Coupling in Excess of 4.5% , 2019, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[57]  橋本 研也,et al.  RF bulk acoustic wave filters for communications , 2009 .

[58]  G. Kovacs,et al.  Improved Material Constants for LiNb03 and LiTaO3 , 1990 .