Testing Some Morphological Approaches to Face Localization

In this paper we present the results of the use of some morphological approaches to feature extraction for face localization in gray level images. Namely we have applied the Morphological Multiscale Fingerprints (MMF), and two grayscale Hit-or-Miss transforms. The morphological feature extraction techniques tested belong to the class of global image feature extraction approaches. They can be combined with others to ensure a more robust face localization. No structural relationships between face elements are taken into account. We compare these results with those obtained using a standard PCA approach.

[1]  Tomaso A. Poggio,et al.  Example-Based Learning for View-Based Human Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Paul Juell,et al.  A hierarchical neural network for human face detection , 1996, Pattern Recognit..

[4]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Sun-Yuan Kung,et al.  Face recognition/detection by probabilistic decision-based neural network , 1997, IEEE Trans. Neural Networks.

[6]  Penio S. Penev,et al.  Local feature analysis: A general statistical theory for object representation , 1996 .

[7]  Takeo Kanade,et al.  Human Face Detection in Visual Scenes , 1995, NIPS.

[8]  Ronald W. Schafer,et al.  Template matching based on a grayscale hit-or-miss transform , 1996, IEEE Trans. Image Process..

[9]  Rama Chellappa,et al.  Human and machine recognition of faces: a survey , 1995, Proc. IEEE.

[10]  Marian Stewart Bartlett,et al.  Viewpoint Invariant Face Recognition using Independent Component Analysis and Attractor Networks , 1996, NIPS.

[11]  Michael C. Burl,et al.  Finding faces in cluttered scenes using random labeled graph matching , 1995, Proceedings of IEEE International Conference on Computer Vision.

[12]  Roberto Cipolla,et al.  Finding initial estimates of human face location , 1995 .

[13]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[14]  Mohamed A. Deriche,et al.  Scale-Space Properties of the Multiscale Morphological Dilation-Erosion , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Kyu Ho Park,et al.  Automatic human face location in a complex background using motion and color information , 1996, Pattern Recognit..

[16]  Thomas S. Huang,et al.  Human face detection in a complex background , 1994, Pattern Recognit..

[17]  F. Guichard Image iterative smoothing and P.D.E.'s , 2000 .

[18]  Takeo Kanade,et al.  Rotation Invariant Neural Network-Based Face Detection , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).