Experimental evidence for the preservation of U-Pb isotope ratios in mantle-recycled crustal zircon grains

Zircon of crustal origin found in mantle-derived rocks is of great interest because of the information it may provide about crust recycling and mantle dynamics. Consideration of this requires understanding of how mantle temperatures, notably higher than zircon crystallization temperatures, affected the recycled zircon grains, particularly their isotopic clocks. Since Pb2+ diffuses faster than U4+ and Th+4, it is generally believed that recycled zircon grains lose all radiogenic Pb after a few million years, thus limiting the time range over which they can be detected. Nonetheless, this might not be the case for zircon included in mantle minerals with low Pb2+ diffusivity and partitioning such as olivine and orthopyroxene because these may act as zircon sealants. Annealing experiments with natural zircon embedded in cristobalite (an effective zircon sealant) show that zircon grains do not lose Pb to their surroundings, although they may lose some Pb to molten inclusions. Diffusion tends to homogenize the Pb concentration in each grain changing the U-Pb and Th-Pb isotope ratios proportionally to the initial 206Pb, 207Pb and 208Pb concentration gradients (no gradient-no change) but in most cases the original age is still recognizable. It seems, therefore, that recycled crustal zircon grains can be detected, and even accurately dated, no matter how long they have dwelled in the mantle.

[1]  K. N. Dollman,et al.  - 1 , 1743 .

[2]  G. L. Cumming,et al.  Ore lead isotope ratios in a continuously changing earth , 1975 .

[3]  D. Chakraborty On the incorporation of metallic impurities in synthetic quartz single crystals , 1978 .

[4]  P. C. Hess,et al.  Solubility of Zircon, Whitlockite and Apatite in Lunar Basalts and Granites , 1980 .

[5]  P. C. Hess,et al.  Zircon saturation in lunar basalts and granites , 1982 .

[6]  P. Pena,et al.  The zircon thermal behaviour: effect of impurities , 1984 .

[7]  P. Pena,et al.  The zircon thermal behaviour: effect of impurities , 1984 .

[8]  W. Lanford,et al.  Lead diffusion in apatite and zircon using ion implantation and Rutherford Backscattering techniques , 1991 .

[9]  P. Beattie The generation of uranium series disequilibria by partial melting of spinel peridotite: constraints from partitioning studies , 1993 .

[10]  T. Wagner,et al.  Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts , 1994 .

[11]  T. Dunn,et al.  Mineral/matrix partition coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: A combined analytical and experimental study , 1994 .

[12]  G. P. Zaraisky,et al.  Thermal decompaction of rocks , 1994 .

[13]  D. Cherniak Diffusion of lead in plagioclase and K-feldspar: an investigation using Rutherford Backscattering and Resonant Nuclear Reaction Analysis , 1995 .

[14]  John H. Jones,et al.  Experimental investigations of the partitioning of Nb, Mo, Ba, Ce, Pb, Ra, Th, Pa, and U between immiscible carbonate and silicate liquids , 1995 .

[15]  T. Dunn,et al.  Diffusivity of strontium, neodymium, and lead in natural rhyolite melt at 1.0 GPa , 1996 .

[16]  E. Watson,et al.  The incorporation of Pb into zircon , 1997 .

[17]  F. Haubrich,et al.  Palaeozoic and Proterozoic zircons from the Mid-Atlantic Ridge , 1998, Nature.

[18]  L. Anovitz,et al.  Dry melting of high albite , 1999 .

[19]  D. Gebauer,et al.  Mesozoic formation of pyroxenites and gabbros in the Ronda area (southern Spain), followed by Early Miocene subduction metamorphism and emplacement into the middle crust: U–Pb sensitive high-resolution ion microprobe dating of zircon , 2000 .

[20]  B. Moine,et al.  Trace Element Residence and Partitioning in Mantle Xenoliths Metasomatized by Highly Alkaline, Silicate- and Carbonate-rich Melts (Kerguelen Islands, Indian Ocean) , 2000 .

[21]  D. Cherniak,et al.  Pb diffusion in zircon , 2001 .

[22]  M. Whitehouse,et al.  Recycling of continental crust into the mantle as revealed by Kytlym dunite zircons, Ural Mts, Russia , 2001 .

[23]  William J. Weber,et al.  Radiation Effects in Zircon , 2003 .

[24]  D. Cherniak,et al.  Diffusion in Zircon , 2003 .

[25]  R. Korsch,et al.  of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards , 2004 .

[26]  S. Ono,et al.  Phase transition of zircon at high P-T conditions , 2004 .

[27]  J. Adam,et al.  Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour , 2006 .

[28]  P. Montero,et al.  The polychronous nature of zircons in gabbroids of the Ural Platinum Belt and the issue of the Precambrian in the Tagil Synclinorium , 2007 .

[29]  H. Smyth,et al.  The deep crust beneath island arcs: inherited zircons reveal a Gondwana continental fragment beneath East Java, Indonesia , 2007 .

[30]  GBoncn J. Nouannunc A METHOD OF MINERAL SEPARATION USING HYDROFLUORIC ACID" , 2007 .

[31]  M. Whitehouse,et al.  Zircon ages of the metavolcanic rocks and metagranites of the Ollo de Sapo Domain in central Spain: implications for the Neoproterozoic to Early Palaeozoic evolution of Iberia , 2007, Geological Magazine.

[32]  F. González-Lodeiro,et al.  Zircon Inheritance Reveals Exceptionally Fast Crustal Magma Generation Processes in Central Iberia during the Cambro-Ordovician , 2007 .

[33]  N. Bortnikov,et al.  Finds of young and ancient zircons in gabbroids of the Markov Deep, Mid-Atlantic Ridge, 5°54′–5°02.2′ N (Results of SHRIMP-II U-Pb Dating): Implication for deep geodynamics of modern oceans , 2008 .

[34]  R. Telle,et al.  Thermal stability of zircon (ZrSiO4) , 2008 .

[35]  M. Whitehouse,et al.  Zircon Geochronology of the Ollo de Sapo Formation and the Age of the Cambro-Ordovician Rifting in Iberia , 2009, The Journal of Geology.

[36]  T. Reischmann,et al.  The Lesvos mafic-ultramafic complex, Greece: Ophiolite or incipient rift? , 2009 .

[37]  M. Newville,et al.  On the valency state of radiogenic lead in zircon and its consequences , 2009 .

[38]  R. Wirth,et al.  On the breakdown of zircon upon “dry” thermal annealing , 2009 .

[39]  T. Murakami,et al.  Determination of the oxidation state of radiogenic Pb in natural zircon using X-ray absorption near-edge structure , 2010, PCM 2010.

[40]  D. Cherniak Diffusion in Quartz, Melilite, Silicate Perovskite, and Mullite , 2010 .

[41]  D. Cherniak Diffusion in Accessory Minerals: Zircon, Titanite, Apatite, Monazite and Xenotime , 2010 .

[42]  A. Dimanov,et al.  Diffusion in Pyroxene, Mica and Amphibole , 2010 .

[43]  P. Johnson,et al.  °Distribution and significance of pre-Neoproterozoic zircons in juvenile Neoproterozoic igneous rocks of the Arabian-Nubian Shield , 2010, American Journal of Science.

[44]  E. Lepekhina,et al.  Younger and older zircons from rocks of the oceanic lithosphere in the Central Atlantic and their geotectonic implications , 2010 .

[45]  Youxue Zhang,et al.  Diffusion Data in Silicate Melts , 2010 .

[46]  E. Watson,et al.  Lead in zircon at the atomic scale , 2012 .

[47]  O. Galland,et al.  A combined analytical and experimental study on the formation of sheath folds , 2012 .

[48]  F. Bea,et al.  Diffusion-induced disturbances of the U–Pb isotope system in pre-magmatic zircon and their influence on SIMS dating. A numerical study , 2013 .

[49]  S. Roberts,et al.  Evolution of the Tyrone ophiolite, Northern Ireland, during the Grampian–Taconic orogeny: a correlative of the Annieopsquotch Ophiolite Belt of central Newfoundland? , 2013, Journal of the Geological Society.

[50]  Simon A. Wilde,et al.  Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography , 2014 .

[51]  M. Kusiak,et al.  Metallic lead nanospheres discovered in ancient zircons , 2015, Proceedings of the National Academy of Sciences.

[52]  V. Anfilogov,et al.  Stability of zircon in dunite at 1400–1550°C , 2015, Doklady Earth Sciences.

[53]  P. Robinson,et al.  The origin and significance of crustal minerals in ophiolitic chromitites and peridotites , 2015 .

[54]  D. Garbe‐Schönberg,et al.  Characterisation of a Natural Quartz Crystal as a Reference Material for Microanalytical Determination of Ti, Al, Li, Fe, Mn, Ga and Ge , 2015 .

[55]  Xiangzhen Xu,et al.  Diamonds and Other Exotic Minerals Recovered from Peridotites of the Dangqiong Ophiolite, Western Yarlung‐Zangbo Suture Zone, Tibet , 2016 .

[56]  Sarah R. Brown,et al.  Age and compositional data of zircon from sepiolite drilling mud to identify contamination of ocean drilling samples , 2016 .

[57]  A. Langone,et al.  Origin and age of zircon-bearing chromitite layers from the Finero phlogopite peridotite (Ivrea–Verbano Zone, Western Alps) and geodynamic consequences , 2016 .

[58]  P. Robinson,et al.  Multi‐stage Process of the Bulqiza Chromitites, Eastern Ophiolitic Belt, Albania , 2016 .

[59]  Dunyi Liu,et al.  Recycling and transport of continental material through the mantle wedge above subduction zones: A Caribbean example , 2016 .

[60]  R. Arculus,et al.  Ancient xenocrystic zircon in young volcanic rocks of the southern Lesser Antilles island arc , 2017 .

[61]  F. Bea,et al.  Geochemical, isotopic, and zircon (U-Pb, O, Hf isotopes) evidence for the magmatic sources of the volcano-plutonic Ollo de Sapo Formation, Central Iberia , 2017 .