Cloud forming potential of secondary organic aerosol under near atmospheric conditions

An Aerodyne quadrupole aerosol mass spectrometer (QAMS) was used to provide on-line, quantitative measurements of the chemical composition and mass size distributions of the non-refractory fraction of the SOA particles at a temporal resolution of two minutes. In brief, the AMS utilizes an aerodynamic lens [Zhang et al., 2004, 2002] to produce a collimated particle beam that impacts on a porous tungsten surface heated typically to 600◦C under high vacuum (∼10−8 Torr), causing the non-refractory fraction of the particles to flash vaporize. The vapor plume is immediately ionized using a 70 eV electron impact (EI) ionization source, and a quadrupole mass spectrometer (QMA 410, Balzers, Liechtenstein) is used to analyze the resultant ions with unit mass-to-charge (m/z ) resolution. More detailed descriptions of the AMS measurement principles and various calibrations [Jayne et al., 2000], its modes of operation [Jimenez et al., 2003] and data processing and analysis [Allan et al., 2004, 2003] are available in other publications.

[1]  M. Andreae,et al.  Size Matters More Than Chemistry for Cloud-Nucleating Ability of Aerosol Particles , 2006, Science.

[2]  Alfred Wiedensohler,et al.  Hygroscopic growth and measured and modeled critical super‐saturations of an atmospheric HULIS sample , 2007 .

[3]  Kenneth A. Smith,et al.  Aerosol mass spectrometer for size and composition analysis of submicron particles , 1998 .

[4]  P. Mcmurry,et al.  Estimation of water uptake by organic compounds in submicron aerosols measured during the Southeastern Aerosol and Visibility Study , 2000 .

[5]  Ernest Weingartner,et al.  Secondary organic aerosol formation by irradiation of 1,3,5-trimethylbenzene-NOx-H2O in a new reaction chamber for atmospheric chemistry and physics. , 2005, Environmental science & technology.

[6]  Hugh Coe,et al.  A curved multi-component aerosol hygroscopicity model framework: Part 2 - Including organic compounds , 2005 .

[7]  Martin Gallagher,et al.  2. Measurements of fine particulate chemical composition in two U.K. cities , 2003 .

[8]  Arthur Garforth,et al.  A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber , 2006 .

[9]  A. Laaksonen,et al.  Atmospheric Chemistry and Physics The role of surfactants in Köhler theory reconsidered , 2004 .

[10]  Sonia M. Kreidenweis,et al.  Influence of water‐soluble organic carbon on cloud drop number concentration , 2005 .

[11]  M. Petters,et al.  A single parameter representation of hygroscopic growth and cloud condensation nucleus activity , 2006 .

[12]  Martin Gysel,et al.  Hygroscopic properties of water-soluble matter and humic-like organics in atmospheric fine aerosol , 2003 .

[13]  J. S. Rowlinson,et al.  Molecular Thermodynamics of Fluid-Phase Equilibria , 1969 .

[14]  Maria Cristina Facchini,et al.  The effect of physical and chemical aerosol properties on warm cloud droplet activation , 2005 .

[15]  U. Baltensperger,et al.  Hygroscopicity of aerosol particles at low temperatures. 2. Theoretical and experimental hygroscopic properties of laboratory generated aerosols. , 2002, Environmental science & technology.

[16]  Edward Charles Fortner,et al.  Atmospheric New Particle Formation Enhanced by Organic Acids , 2004, Science.

[17]  Charles E. Kolb,et al.  A Numerical Characterization of Particle Beam Collimation by an Aerodynamic Lens-Nozzle System: Part I. An Individual Lens or Nozzle , 2002 .

[18]  John H. Seinfeld,et al.  Cloud condensation nucleus activation properties of biogenic secondary organic aerosol , 2005 .

[19]  Sonia M. Kreidenweis,et al.  Water activity and activation diameters from hygroscopicity data - Part I: Theory and application to inorganic salts , 2005 .

[20]  N. Takegawa,et al.  Relationship between hygroscopicity and cloud condensation nuclei activity for urban aerosols in Tokyo , 2006 .

[21]  A. Nenes,et al.  A Continuous-Flow Streamwise Thermal-Gradient CCN Chamber for Atmospheric Measurements , 2005 .

[22]  John H. Seinfeld,et al.  Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds , 2006 .

[23]  Allen L Robinson,et al.  Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging , 2007, Science.

[24]  Hugh Coe,et al.  A curved multi-component aerosol hygroscopicity model framework: Part 1 Inorganic compounds , 2005 .

[25]  J. Seinfeld,et al.  Gas/Particle Partitioning and Secondary Organic Aerosol Yields , 1996 .

[26]  Sonia M. Kreidenweis,et al.  Cloud droplet activation of secondary organic aerosol , 2007 .

[27]  Ernest Weingartner,et al.  Laboratory observation of oligomers in the aerosol from isoprene/NOx photooxidation , 2006 .

[28]  M Gysel,et al.  Hygroscopicity of aerosol particles at low temperatures. 1. New low-temperature H-TDMA instrument: setup and first applications. , 2002, Environmental science & technology.

[29]  Yinon Rudich,et al.  under a Creative Commons License. Atmospheric Chemistry and Physics Cloud Condensation Nuclei properties of model and atmospheric , 2006 .

[30]  Martin Gallagher,et al.  Quantitative sampling using an Aerodyne aerosol mass spectrometer 2. Measurements of fine particulate chemical composition in two U.K. cities: QUANTITATIVE AEROSOL MASS SPECTROMETER ANALYSIS, 2 , 2003 .

[31]  Hugh Coe,et al.  Simplification of the representation of the organic component of atmospheric particulates. , 2005, Faraday discussions.

[32]  Erik Swietlicki,et al.  Organic aerosol and global climate modelling: a review , 2004 .

[33]  J. Jimenez,et al.  A generalised method for the extraction of chemically resolved mass spectra from aerodyne aerosol mass spectrometer data , 2004 .

[34]  R. Robinson,et al.  Interactions in Aqueous Nonelectrolyte Solutions. I. Solute-Solvent Equilibria , 1966 .

[35]  Charles E. Kolb,et al.  Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer , 2003 .

[36]  John H Seinfeld,et al.  Secondary organic aerosol formation from isoprene photooxidation. , 2005, Environmental science & technology.

[37]  R Zenobi,et al.  Secondary organic aerosols from anthropogenic and biogenic precursors. , 2005, Faraday discussions.

[38]  Riikka Sorjamaa,et al.  The influence of surfactant properties on critical supersaturations of cloud condensation nuclei , 2006 .

[39]  M. Facchini,et al.  Cloud albedo enhancement by surface-active organic solutes in growing droplets , 1999, Nature.

[40]  A. Laaksonen,et al.  The role of surfactants in K ¨ ohler theory reconsidered , 2004 .