Bifurcation analysis for a single population model with advection

[1]  Y. Lou,et al.  Global dynamics of a generalist predator–prey model in open advective environments , 2022, Journal of Mathematical Biology.

[2]  Rong Yuan,et al.  Hopf bifurcation in a reaction-diffusion-advection equation with nonlocal delay effect , 2021, Journal of Differential Equations.

[3]  Junjie Wei,et al.  Hopf Bifurcation of a Delayed Single Population Model with Patch Structure , 2019, Journal of Dynamics and Differential Equations.

[4]  Shanshan Chen,et al.  The stability and Hopf bifurcation of the diffusive Nicholson’s blowflies model in spatially heterogeneous environment , 2020, 2005.14402.

[5]  Junjie Wei,et al.  Bifurcation Analysis for a Delayed Diffusive Logistic Population Model in the Advective Heterogeneous Environment , 2020, Journal of Dynamics and Differential Equations.

[6]  Hongying Shu,et al.  Dirichlet problem for a delayed diffusive hematopoiesis model , 2019, Nonlinear Analysis: Real World Applications.

[7]  Junjie Wei,et al.  Two delays induce Hopf bifurcation and double Hopf bifurcation in a diffusive Leslie-Gower predator-prey system. , 2018, Chaos.

[8]  Y. Lou,et al.  Global dynamics of a Lotka–Volterra competition–diffusion–advection system in heterogeneous environments , 2019, Journal de Mathématiques Pures et Appliquées.

[9]  Shangjiang Guo,et al.  Patterns in a nonlocal time-delayed reaction–diffusion equation , 2018 .

[10]  Yuan Lou,et al.  Hopf bifurcation in a delayed reaction-diffusion-advection population model , 2017, 1706.02087.

[11]  Y. Lou,et al.  The Role of Advection in a Two-species Competition Model: A Bifurcation Approach , 2017 .

[12]  Li Ma,et al.  Stability and Bifurcation in a Delayed Reaction–Diffusion Equation with Dirichlet Boundary Condition , 2016, J. Nonlinear Sci..

[13]  Yuan Lou,et al.  Evolution of dispersal in advective homogeneous environment: The effect of boundary conditions , 2015 .

[14]  Yuan Lou,et al.  Evolution of dispersal in open advective environments , 2013, Journal of Mathematical Biology.

[15]  Jianhong Wu,et al.  Global dynamics of Nicholsonʼs blowflies equation revisited: Onset and termination of nonlinear oscillations , 2013 .

[16]  Hal L. Smith,et al.  An introduction to delay differential equations with applications to the life sciences / Hal Smith , 2010 .

[17]  Wan-Tong Li,et al.  Stability of bifurcating periodic solutions in a delayed reaction–diffusion population model , 2010 .

[18]  Elena Braverman,et al.  Nicholson's blowflies differential equations revisited: Main results and open problems , 2010 .

[19]  Junjie Wei,et al.  Bifurcation analysis in a delayed diffusive Nicholson’s blowflies equation☆ , 2010 .

[20]  Junjie Wei,et al.  Hopf bifurcations in a reaction-diffusion population model with delay effect , 2009 .

[21]  Xiao-Qiang Zhao,et al.  GLOBAL ATTRACTIVITY IN A CLASS OF NONMONOTONE REACTION-DIFFUSION EQUATIONS WITH TIME DELAY , 2009 .

[22]  Junjie Wei,et al.  Bifurcation analysis in a scalar delay differential equation , 2007 .

[23]  B. Z. Moroz,et al.  london mathematical society lecture note series , 2007 .

[24]  C. Cosner,et al.  Movement toward better environments and the evolution of rapid diffusion. , 2006, Mathematical biosciences.

[25]  Frithjof Lutscher,et al.  Effects of Heterogeneity on Spread and Persistence in Rivers , 2006, Bulletin of mathematical biology.

[26]  S. Ruan DELAY DIFFERENTIAL EQUATIONS IN SINGLE SPECIES DYNAMICS , 2006 .

[27]  Junjie Wei,et al.  Hopf bifurcation analysis in a delayed Nicholson blowflies equation , 2005 .

[28]  J. Roughgarden,et al.  The Impact of Directed versus Random Movement on Population Dynamics and Biodiversity Patterns , 2005, The American Naturalist.

[29]  Marc Bélisle,et al.  Gap-crossing decisions by forest birds: an empirical basis for parameterizing spatially-explicit, individual-based models , 2002, Landscape Ecology.

[30]  Jean Clobert,et al.  Public Information and Breeding Habitat Selection in a Wild Bird Population , 2002, Science.

[31]  Jianhong Wu,et al.  Smoothness of Center Manifolds for Maps and Formal Adjoints for Semilinear FDEs in General Banach Spaces , 2002, SIAM J. Math. Anal..

[32]  William Gurney,et al.  POPULATION PERSISTENCE IN RIVERS AND ESTUARIES , 2001 .

[33]  Teresa Faria,et al.  Stability and Bifurcation for a Delayed Predator–Prey Model and the Effect of Diffusion☆ , 2001 .

[34]  Teresa Faria,et al.  Normal forms for semilinear functional differential equations in Banach spaces and applications. Part II , 2000 .

[35]  Joseph W.-H. So,et al.  DIRICHLET PROBLEM FOR THE DIFFUSIVE NICHOLSON'S BLOWFLIES EQUATION , 1998 .

[36]  Jianhong Wu Theory and Applications of Partial Functional Differential Equations , 1996 .

[37]  Wenzhang Huang,et al.  Stability and Hopf Bifurcation for a Population Delay Model with Diffusion Effects , 1996 .

[38]  G. Karakostas,et al.  Stable steady state of some population models , 1992 .

[39]  Alan Hastings,et al.  Can spatial variation alone lead to selection for dispersal , 1983 .

[40]  B. Hassard,et al.  Theory and applications of Hopf bifurcation , 1981 .

[41]  S. P. Blythe,et al.  Nicholson's blowflies revisited , 1980, Nature.

[42]  L. Glass,et al.  PATHOLOGICAL CONDITIONS RESULTING FROM INSTABILITIES IN PHYSIOLOGICAL CONTROL SYSTEMS * , 1979, Annals of the New York Academy of Sciences.

[43]  N. Macdonald Time lags in biological models , 1978 .

[44]  Thomas W. Schoener,et al.  STABILITY AND COMPLEXITY IN MODEL ECOSYSTEMS , 1974 .

[45]  M. Crandall,et al.  Bifurcation from simple eigenvalues , 1971 .

[46]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[47]  C. Huffaker Experimental studies on predation : dispersion factors and predator-prey oscillations , 1958 .