Anytime Interval-Valued Outputs for Kernel Machines: Fast Support Vector Machine Classification via Distance Geometry

We introduce a computational geometry method for which classification cost becomes roughly proportional to the difficulty of each example.

[1]  Tom Downs,et al.  Exact Simplification of Support Vector Solutions , 2002, J. Mach. Learn. Res..

[2]  Andrew Blake,et al.  Computationally efficient face detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[3]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[4]  Christopher J. C. Burges,et al.  Simplified Support Vector Decision Rules , 1996, ICML.

[5]  Gunnar Rätsch,et al.  A Mathematical Programming Approach to the Kernel Fisher Algorithm , 2000, NIPS.

[6]  Bernhard Schölkopf,et al.  Improving the Accuracy and Speed of Support Vector Machines , 1996, NIPS.

[7]  Kristin P. Bennett,et al.  Duality and Geometry in SVM Classifiers , 2000, ICML.

[8]  Bernhard Schölkopf,et al.  Sparse Greedy Matrix Approximation for Machine Learning , 2000, International Conference on Machine Learning.

[9]  Bernhard Schölkopf,et al.  Fast Approximation of Support Vector Kernel Expansions, and an Interpretation of Clustering as Approximation in Feature Spaces , 1998, DAGM-Symposium.

[10]  Pat Langley,et al.  Editorial: On Machine Learning , 1986, Machine Learning.

[11]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[12]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[13]  W. Beyer CRC Handbook of Mathematical Sciences , 1978 .

[14]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[15]  Zhijun Wu,et al.  Mathematical Modeling of Protein Structure Using Distance Geometry , 2000 .

[16]  Gunnar Rätsch,et al.  Input space versus feature space in kernel-based methods , 1999, IEEE Trans. Neural Networks.