Speckle Noise Reduction in B-Mode Echocardiographic Images: A comparison

ABSTRACT This paper presents the despeckling applications of 48 filters for B-mode echocardiographic images. The filters are grouped into eight types, namely, local statistics, fuzzy, Fourier, multiscale, nonlinear iterative, total variation, nonlocal mean, and hybrid. The thrust areas of analyses are noise suppression, edge, and structure preservation evaluated in terms of image quality metrics, visual quality assessment, and clinical validation. The comparative analysis reveals that filters based on generalized likelihood ratio, local statistics (mean and variance), detail preserving anisotropic diffusion, fast bilateral, sparse representation based beta process factor analysis, and patch-based locally optimal Wiener and probabilistic nonlocal means stand out among the techniques being considered for comparison.

[1]  Nagashettappa Biradar,et al.  Speckle noise reduction in echocardiographic images of aortic valve and cardiac chambers , 2015 .

[2]  R. S. Anand,et al.  Ripplet domain non-linear filtering for speckle reduction in ultrasound medical images , 2014, Biomed. Signal Process. Control..

[3]  Gilles Aubert,et al.  A Variational Approach to Removing Multiplicative Noise , 2008, SIAM J. Appl. Math..

[4]  Joachim Weickert,et al.  Coherence-Enhancing Shock Filters , 2003, DAGM-Symposium.

[5]  Michael Unser,et al.  Fast $O(1)$ Bilateral Filtering Using Trigonometric Range Kernels , 2011, IEEE Transactions on Image Processing.

[6]  Scott T. Acton,et al.  Speckle reducing anisotropic diffusion , 2002, IEEE Trans. Image Process..

[7]  Aleksandra Pizurica,et al.  Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising , 2006, IEEE Transactions on Image Processing.

[8]  Lei Zhang,et al.  Noise Reduction for Magnetic Resonance Images via Adaptive Multiscale Products Thresholding , 2003, IEEE Trans. Medical Imaging.

[9]  Aleksandra Pizurica,et al.  A versatile wavelet domain noise filtration technique for medical imaging , 2003, IEEE Transactions on Medical Imaging.

[10]  M Glavin,et al.  Echocardiographic speckle reduction comparison , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[11]  Alexander Wong,et al.  General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery. , 2010, Optics express.

[12]  Dengwen Zhou,et al.  Image denoising with an optimal threshold and neighbouring window , 2008, Pattern Recognit. Lett..

[13]  R. S. Anand,et al.  Despeckling of ultrasound images of bone fracture using M-band ridgelet transform , 2014 .

[14]  A. A. Bini,et al.  Despeckling low SNR, low contrast ultrasound images via anisotropic level set diffusion , 2014, Multidimens. Syst. Signal Process..

[15]  K. Shanmugam,et al.  An adaptive filter for smoothing noisy radar images , 1981, Proceedings of the IEEE.

[16]  Yehoshua Y. Zeevi,et al.  Estimation of optimal PDE-based denoising in the SNR sense , 2006, IEEE Transactions on Image Processing.

[17]  Hon Keung Kwan,et al.  Fuzzy filters for image filtering , 2002, The 2002 45th Midwest Symposium on Circuits and Systems, 2002. MWSCAS-2002..

[18]  Santiago Aja-Fernández,et al.  On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering , 2006, IEEE Transactions on Image Processing.

[19]  Chen Wang,et al.  Comparison of Despeckle Filters for Breast Ultrasound Images , 2015, Circuits Syst. Signal Process..

[20]  Antonio Fernández-Caballero,et al.  Finding out general tendencies in speckle noise reduction in ultrasound images , 2009, Expert Syst. Appl..

[21]  S. Kaddoura Echo Made Easy , 2001 .

[22]  Dengwen Zhou,et al.  Image Denoising Using Block Thresholding , 2008, 2008 Congress on Image and Signal Processing.

[23]  Satwant Kaur How Medical Robots are going to Affect Our Lives , 2012 .

[24]  H. Kwan Fuzzy Filters for Noise Reduction in Images , 2003 .

[25]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[26]  David B. Dunson,et al.  Nonparametric Bayesian Dictionary Learning for Analysis of Noisy and Incomplete Images , 2012, IEEE Transactions on Image Processing.

[27]  Yu-Long Qiao,et al.  M-band ridgelet transform based texture classification , 2010, Pattern Recognit. Lett..

[28]  Alexander A. Sawchuk,et al.  Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Pierrick Coupé,et al.  Nonlocal Means-Based Speckle Filtering for Ultrasound Images , 2009, IEEE Transactions on Image Processing.

[30]  Florence Tupin,et al.  Iterative Weighted Maximum Likelihood Denoising With Probabilistic Patch-Based Weights , 2009, IEEE Transactions on Image Processing.

[31]  Martin Vetterli,et al.  Adaptive wavelet thresholding for image denoising and compression , 2000, IEEE Trans. Image Process..

[32]  Christos P. Loizou,et al.  Despeckle filtering software toolbox for ultrasound imaging of the common carotid artery , 2014, Comput. Methods Programs Biomed..

[33]  Nagashettappa Biradar,et al.  SPECKLE NOISE REDUCTION USING HYBRID TMAV BASED FUZZY FILTER , 2014 .

[34]  I. Elamvazuthi,et al.  Despeckling of ultrasound images of bone fracture using multiple filtering algorithms , 2013, Math. Comput. Model..

[35]  Nagashettappa Biradar,et al.  Edge Preserved Speckle Noise Reduction Using Integrated Fuzzy Filters , 2014, International scholarly research notices.

[36]  B. Silverman,et al.  Incorporating Information on Neighboring Coefficients Into Wavelet Estimation , 2001 .

[37]  Joachim Weickert,et al.  Coherence-Enhancing Diffusion Filtering , 1999, International Journal of Computer Vision.

[38]  Thierry Blu,et al.  The SURE-LET Approach to Image Denoising , 2007, IEEE Transactions on Image Processing.

[39]  Lei Yang,et al.  Ripplet: A new transform for image processing , 2010, J. Vis. Commun. Image Represent..

[40]  Sudipta Mukhopadhyay,et al.  Removal of Fog from Images: A Review , 2012 .

[41]  Peyman Milanfar,et al.  Patch-Based Near-Optimal Image Denoising , 2012, IEEE Transactions on Image Processing.

[42]  Thierry Blu,et al.  A New SURE Approach to Image Denoising: Interscale Orthonormal Wavelet Thresholding , 2007, IEEE Transactions on Image Processing.

[43]  A. Tannenbaum,et al.  Despeckling of medical ultrasound images , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[44]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[45]  M. L. Dewal,et al.  A novel hybrid homomorphic fuzzy filter for speckle noise reduction , 2014 .

[46]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  Rafael C. González,et al.  Digital image processing using MATLAB , 2006 .

[48]  Christos P. Loizou,et al.  Despeckle Filtering Algorithms and Software for Ultrasound Imaging , 2008, Despeckle Filtering Algorithms and Software for Ultrasound Imaging.

[49]  N. Sochen,et al.  Texture Preserving Variational Denoising Using an Adaptive Fidelity Term , 2003 .

[50]  Jong-Sen Lee,et al.  Speckle analysis and smoothing of synthetic aperture radar images , 1981 .

[51]  Dimitris N. Metaxas,et al.  Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions , 2003, IEEE Transactions on Medical Imaging.

[52]  Victor S. Frost,et al.  A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.