Decreasing the Uncertainty of the Target Center Estimation at Terrestrial Laser Scanning by Choosing the Best Algorithm and by Improving the Target Design

[1]  Luc Cournoyer,et al.  Methods and considerations to determine sphere center from terrestrial laser scanner point cloud data , 2017, Measurement science & technology.

[2]  Juha Hyyppä,et al.  Study of surface brightness from backscattered laser intensity: calibration of laser data , 2005, IEEE Geoscience and Remote Sensing Letters.

[3]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Derek D. Lichti,et al.  Metric performance of a high-resolution laser scanner , 2000, IS&T/SPIE Electronic Imaging.

[5]  Luc Cournoyer,et al.  Relative range error evaluation of terrestrial laser scanners using a plate, a sphere, and a novel dual-sphere-plate target. , 2017, Measurement science & technology.

[6]  Steven D. Phillips,et al.  Evaluation of a laser scanner for large volume coordinate metrology: a comparison of results before and after factory calibration , 2014 .

[7]  K. Kregar,et al.  High precision target center determination from a point cloud , 2013 .

[8]  Manuel Guizar-Sicairos,et al.  Efficient subpixel image registration algorithms. , 2008, Optics letters.

[9]  Th. Wunderlich,et al.  Target identification in terrestrial laser scanning , 2015 .

[10]  Mohammad Omidalizarandi,et al.  Terrestrial laser scanning technology for deformation monitoring and surface modeling of arch structures , 2017 .

[11]  D. Lichti,et al.  Angular resolution of terrestrial laser scanners , 2006 .

[12]  Frank Neitzel,et al.  An intensity-based stochastic model for terrestrial laser scanners , 2017 .

[13]  Mohammad Omidalizarandi,et al.  Automatic and accurate passive target centroid detection for applications in engineering geodesy , 2019 .

[14]  Bertil Magnusson,et al.  Understanding the meaning of accuracy, trueness and precision , 2007 .

[15]  Laishui Zhou,et al.  Automatic Detection of Cross-Shaped Targets for Laser Scan Registration , 2018, IEEE Access.

[16]  Darius Burschka,et al.  A correlation based target finder for terrestrial laser scanning , 2008 .

[17]  Heiner Kuhlmann,et al.  Towards System Calibration of Panoramic Laser Scanners from a Single Station , 2017, Sensors.

[18]  Christopher J. Blackburn,et al.  Volumetric performance evaluation of a laser scanner based on geometric error model , 2015 .

[19]  Geraldine S. Cheok,et al.  Report on the May 2016 ASTM E57.02 instrument runoff at NIST, Part 1 Background information and key findings , 2016 .

[20]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[21]  Derek D. Lichti,et al.  How to Efficiently Determine the Range Precision of 3D Terrestrial Laser Scanners , 2019, Sensors.

[22]  Kai Tan,et al.  Specular Reflection Effects Elimination in Terrestrial Laser Scanning Intensity Data Using Phong Model , 2017, Remote. Sens..

[23]  Derek D. Lichti,et al.  Parameter de-correlation and model-identification in hybrid-style terrestrial laser scanner self-calibration , 2011 .

[24]  M. Menenti,et al.  Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points , 2011 .

[25]  Qingming Zhan,et al.  Automatic Registration of Terrestrial Laser Scanning Data Using Precisely Located Artificial Planar Targets , 2014, IEEE Geoscience and Remote Sensing Letters.

[26]  D. Lichti,et al.  A rigorous rangefinder calibration method for terrestrial laser scanners , 2005 .