Structure and arithmetic complexity of products and inverses of Toeplitz matrices
暂无分享,去创建一个
[1] Pierre Duhamel,et al. Doubling Levinson/Schur algorithm and its implementation , 1989, International Conference on Acoustics, Speech, and Signal Processing,.
[2] T. Shalom. On algebras of Toeplitz matrices , 1987 .
[3] Richard E. Blahut,et al. Fast Algorithms for Digital Signal Processing , 1985 .
[4] James R. Bunch,et al. Stability of Methods for Solving Toeplitz Systems of Equations , 1985 .
[5] J. L. Hock,et al. An exact recursion for the composite nearest‐neighbor degeneracy for a 2×N lattice space , 1984 .
[6] G. Rota. Hankel and toeplitz matrices and forms: I. S. Iohvidov. Birkhaüser, Basel, 1982, 231 pp. , 1983 .
[7] Nicholas Pippenger,et al. Algebraic Complexity Theory , 1981, IBM J. Res. Dev..
[8] B. Anderson,et al. Asymptotically fast solution of toeplitz and related systems of linear equations , 1980 .
[9] L. Ljung,et al. New inversion formulas for matrices classified in terms of their distance from Toeplitz matrices , 1979 .
[10] I. Gohberg,et al. Convolution Equations and Projection Methods for Their Solution , 1974 .
[11] J. Lafon,et al. Base tensorielle des matrices de Hankel (ou de Toeplitz) Applications , 1974 .
[12] Shmuel Winograd,et al. A New Algorithm for Inner Product , 1968, IEEE Transactions on Computers.
[13] W. F. Trench. An Algorithm for the Inversion of Finite Toeplitz Matrices , 1964 .
[14] N. Levinson. The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .
[15] W. Gragg,et al. Superfast solution of real positive definite toeplitz systems , 1988 .
[16] S. Winograd. Arithmetic complexity of computations , 1980 .
[17] O. M. Makarov. The lower bound of the number of multiplication operations for calculating the product of hankel matrices , 1977 .