Structure and arithmetic complexity of products and inverses of Toeplitz matrices

[1]  Pierre Duhamel,et al.  Doubling Levinson/Schur algorithm and its implementation , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[2]  T. Shalom On algebras of Toeplitz matrices , 1987 .

[3]  Richard E. Blahut,et al.  Fast Algorithms for Digital Signal Processing , 1985 .

[4]  James R. Bunch,et al.  Stability of Methods for Solving Toeplitz Systems of Equations , 1985 .

[5]  J. L. Hock,et al.  An exact recursion for the composite nearest‐neighbor degeneracy for a 2×N lattice space , 1984 .

[6]  G. Rota Hankel and toeplitz matrices and forms: I. S. Iohvidov. Birkhaüser, Basel, 1982, 231 pp. , 1983 .

[7]  Nicholas Pippenger,et al.  Algebraic Complexity Theory , 1981, IBM J. Res. Dev..

[8]  B. Anderson,et al.  Asymptotically fast solution of toeplitz and related systems of linear equations , 1980 .

[9]  L. Ljung,et al.  New inversion formulas for matrices classified in terms of their distance from Toeplitz matrices , 1979 .

[10]  I. Gohberg,et al.  Convolution Equations and Projection Methods for Their Solution , 1974 .

[11]  J. Lafon,et al.  Base tensorielle des matrices de Hankel (ou de Toeplitz) Applications , 1974 .

[12]  Shmuel Winograd,et al.  A New Algorithm for Inner Product , 1968, IEEE Transactions on Computers.

[13]  W. F. Trench An Algorithm for the Inversion of Finite Toeplitz Matrices , 1964 .

[14]  N. Levinson The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .

[15]  W. Gragg,et al.  Superfast solution of real positive definite toeplitz systems , 1988 .

[16]  S. Winograd Arithmetic complexity of computations , 1980 .

[17]  O. M. Makarov The lower bound of the number of multiplication operations for calculating the product of hankel matrices , 1977 .