Material design and development: From classical thermodynamics to CALPHAD and ICME approaches

Abstract This paper presents an overview and examples of material design and development using (1) classical thermodynamics; (2) CALPHAD (calculation of phase diagrams) modeling; and (3) Integrated Computational Materials Engineering (ICME) approaches. Although the examples are given in lightweight aluminum and magnesium alloys for structural applications, the fundamental methodology and modeling principles are applicable to all materials and engineering applications. The examples in this paper have demonstrated the effectiveness and limitations of classical thermodynamics in solving specific problems (such as nucleation during solidification and solid-state precipitation in aluminum alloys). Computational thermodynamics and CALPHAD modeling, when combined with critical experimental validation, have been used to guide the selection and design of new magnesium alloys for elevated-temperature applications. The future of material design and development will be based on a holistic ICME approach. However, key challenges exist in many aspects of ICME framework, such as the lack of diffusion/mobility databases for many materials systems, limitation of current microstructural modeling capability and integration tools for simulation codes of different length scales.

[1]  M. Gibson,et al.  Refinement of precipitate distributions in an age-hardenable Mg–Sn alloy through microalloying , 2006 .

[2]  A. Luo,et al.  Magnesium Alloy Development for Automotive Applications , 2012 .

[3]  Long-Qing Chen,et al.  Computer simulation of stress-oriented nucleation and growth of θ′ precipitates inAl–Cu alloys , 1998 .

[4]  A. Khachaturyan,et al.  Phase field microelasticity modeling of heterogeneous nucleation and growth in martensitic alloys , 2007 .

[5]  W. A. Oates,et al.  Phase diagram calculation: past, present and future , 2004 .

[6]  Yunzhi Wang,et al.  Predicting equilibrium shape of precipitates as function of coherency state , 2012 .

[7]  Yunzhi Wang,et al.  Variant selection during α precipitation in Ti–6Al–4V under the influence of local stress – A simulation study , 2013 .

[8]  Baicheng Liu,et al.  Large-scale three-dimensional phase-field simulation of multi-variant β-Mg17Al12 in Mg–Al-based alloys , 2015 .

[9]  W. Youdelis,et al.  Carbide phases in cobalt base superalloy: role of nucleation entropy in refinement , 1983 .

[10]  R. Becker,et al.  Kinetische Behandlung der Keimbildung in übersättigten Dämpfen , 1935 .

[11]  Qiaofu Zhang,et al.  Extracting interdiffusion coefficients from binary diffusion couples using traditional methods and a forward-simulation method , 2013 .

[12]  J. F. Libsch,et al.  On the nature of embrittlement occurring while tempering a Ni-Cr alloy steel , 1957 .

[13]  Ji-Cheng Zhao Combinatorial approaches as effective tools in the study of phase diagrams and composition-structure-property relationships , 2006 .

[14]  P. Gregson,et al.  Microstructural control of toughness in aluminium-lithium alloys , 1985 .

[15]  A. Borgenstam,et al.  Effect of external loading on the martensitic transformation – A phase field study , 2013 .

[16]  Long-Qing Chen,et al.  A three-dimensional phase-field model for computer simulation of lamellar structure formation in γTiAl intermetallic alloys , 2001 .

[17]  Long-Qing Chen,et al.  Morphological evolution of coherent multi-variant Ti11Ni14 precipitates in Ti-Ni alloys under an applied stress—a computer simulation study , 1998 .

[18]  R. Schmid-Fetzer Phase Diagrams: The Beginning of Wisdom , 2014 .

[19]  Zi-kui Liu,et al.  First-principles study of self-diffusion in hcp Mg and Zn , 2010 .

[20]  J. Karov,et al.  Precipitation in Al–3Cu–0·1Be , 1987 .

[21]  A. Luo,et al.  Interdiffusion and Phase Growth Kinetics in Magnesium-Aluminum Binary System , 2013 .

[22]  W. Youdelis,et al.  Effect of beryllium and calcium on aging behaviour of Al–0·75Mg–0·5Si alloy , 1989 .

[23]  C. S. Yang,et al.  Ti(Al, Si)3 compound formation in non-equilibrated Al-Ti-Si alloy , 1980 .

[24]  Gregory B Olson,et al.  Genomic materials design: The ferrous frontier , 2013 .

[25]  Chris Wolverton,et al.  First principles impurity diffusion coefficients , 2009 .

[26]  Mahmood Mamivand,et al.  Phase Field Modeling of the Tetragonal-to-Monoclinic Phase Transformation in Zirconia , 2013 .

[27]  I. Polmear,et al.  Light Alloys: From Traditional Alloys to Nanocrystals , 2006 .

[28]  Hemantha Kumar Yeddu,et al.  Three-dimensional phase-field modeling of martensitic microstructure evolution in steels , 2012 .

[29]  Gregory B Olson,et al.  Materials genomics: From CALPHAD to flight , 2014 .

[30]  T. Pollock,et al.  Solidification paths and eutectic intermetallic phases in Mg-Al-Ca ternary alloys , 2005 .

[31]  H. Aaronson,et al.  The elastic strain energy of coherent ellipsoidal precipitates in anisotropic crystalline solids , 1977 .

[32]  W. Youdelis,et al.  Solubility of beryllium in CuAl2 , 1987 .

[33]  Dierk Raabe,et al.  Cellular Automata in Materials Science with Particular Reference to Recrystallization Simulation , 2002 .

[34]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[35]  Hemantha Kumar Yeddu,et al.  Three dimensional elasto-plastic phase field simulation of martensitic transformation in polycrystal , 2012 .

[36]  J. Murray Al-V (aluminum-vanadium) , 1989 .

[37]  Baicheng Liu,et al.  Three-Dimensional Phase-Field Simulation and Experimental Validation of β-Mg17Al12 Phase Precipitation in Mg-Al-Based Alloys , 2015, Metallurgical and Materials Transactions A.

[38]  C. Wolverton,et al.  Multiscale modeling of precipitate microstructure evolution. , 2002, Physical review letters.

[39]  A. Luo,et al.  Precipitation Simulation of AZ91 Alloy , 2014 .

[40]  R. Ninomiya,et al.  Improved heat resistance of Mg-Al alloys by the Ca addition , 1995 .

[41]  W. Youdelis,et al.  Carbide phases in nickel base superalloy: nucleation properties of MC type carbide , 1983 .

[42]  Zi-kui Liu,et al.  First-principles calculations of impurity diffusion coefficients in dilute Mg alloys using the 8-frequency model , 2011 .

[43]  J. Ågren Thermodynamics and Diffusion Coupling in Alloys—Application-Driven Science , 2012, Metallurgical and Materials Transactions A.

[44]  S. Shang,et al.  3d transition metal impurities in aluminum: A first-principles study , 2009 .

[45]  Yi Wang,et al.  First-principles calculation of self-diffusion coefficients. , 2008, Physical review letters.

[46]  Zi-kui Liu,et al.  First-Principles Investigation of Laves Phases in Mg-Al-Ca System , 2005 .

[47]  G. B. Olson,et al.  Designing a New Material World , 2000, Science.

[48]  Bob R. Powell,et al.  Computational phase equilibria and experimental investigation of magnesium–aluminum–calcium alloys , 2012 .

[49]  W. Youdelis Nucleation entropy and grain refinement of alloys , 1979 .

[50]  A. Luo,et al.  The evolution of technology for materials processing over the last 50 years: The automotive example , 2007 .

[51]  Tao Wang,et al.  Three-dimensional phase-field simulations of coarsening kinetics of γ' particles in binary Ni-Al alloys , 2004 .

[52]  Hemantha Kumar Yeddu,et al.  Stress-assisted martensitic transformations in steels: A 3-D phase-field study , 2013 .

[53]  Long-Qing Chen,et al.  Coarsening kinetics of δ′-Al3Li precipitates: phase-field simulation in 2D and 3D , 2000 .

[54]  R. Dorward Solidus and solvus isotherms for quaternary Al-Li-Cu-Mg alloys , 1988 .

[55]  Ingo Steinbach,et al.  Phase-Field Model for Microstructure Evolution at the Mesoscopic Scale , 2013 .

[56]  Ji-Cheng Zhao,et al.  CALPHAD—Is It Ready for Superalloy Design? , 2002 .

[57]  Zi-kui Liu,et al.  Predicting Diffusion Coefficients from First Principles via Eyring’s Reaction Rate Theory , 2009 .

[58]  Y. Sohn,et al.  Interdiffusion in the Mg-Al System and Intrinsic Diffusion in β-Mg2Al3 , 2012, Metallurgical and Materials Transactions A.

[59]  T. Sudarshan,et al.  Mechanisms of fatigue crack initiation in metals: role of aqueous environments , 1988 .

[60]  Elizabeth A. Holm,et al.  The computer simulation of microstructural evolution , 2001 .

[61]  W. Youdelis,et al.  Microstructure and mechanical behavior of Al-Li-Cu-Mg alloy 8090 microalloyed with V and Be , 1993 .

[62]  W. Youdelis Nucleation Entropy and Supercooling in Alloys , 1975 .

[63]  W. Youdelis,et al.  Beryllium-enhanced grain refinement of aluminium–titanium alloys , 1982 .

[64]  Bob R. Powell,et al.  Creep and microstructure of magnesium-aluminum-calcium based alloys , 2002 .

[65]  Qudong Wang,et al.  Behavior of Mg–Al–Ca alloy during solution heat treatment at 415 °C , 2002 .

[66]  David Turnbull,et al.  Rate of Nucleation in Condensed Systems , 1949 .

[67]  F. Nabarro The strains produced by precipitation in alloys , 1940, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[68]  Zi-kui Liu First-Principles Calculations and CALPHAD Modeling of Thermodynamics , 2009 .

[69]  Ji-Cheng Zhao Methods for phase diagram determination , 2007 .