CONTROL OPPORTUNITIES IN SYSTEMS BIOLOGY

Abstract Systems biology has developed rapidly as a result of advances in high- throughput biological measurement and more recently through mathematical modelling of cellular and metabolic processes. As a result of these developments it has become clear that control and systems theory will play an important role in understanding the mechanisms of life. Consequently, there are many exciting opportunities for control experts who want to shift their interests to systems biology. But how can a newcomer identify worthwhile problems? This article is an attempt to answer this question by outlining the area and describing the opportunities for control and systems theory.

[1]  D. Noble A modification of the Hodgkin—Huxley equations applicable to Purkinje fibre action and pacemaker potentials , 1962, The Journal of physiology.

[2]  Hiroaki Kitano,et al.  Biological robustness , 2008, Nature Reviews Genetics.

[3]  David Angeli,et al.  Monotone control systems , 2003, IEEE Trans. Autom. Control..

[4]  Christopher A. Voigt,et al.  The Bacillus subtilis sin Operon , 2005, Genetics.

[5]  John L. Casti,et al.  The theory of metabolism-repair systems , 1988 .

[6]  D. Noble Modeling the Heart--from Genes to Cells to the Whole Organ , 2002, Science.

[7]  B. Kholodenko Cell-signalling dynamics in time and space , 2006, Nature Reviews Molecular Cell Biology.

[8]  Shankar P. Bhattacharyya,et al.  Robust, fragile, or optimal? , 1997, IEEE Trans. Autom. Control..

[9]  Jack Schmidt,et al.  FNAL central email systems , 2004 .

[10]  Leroy Hood,et al.  Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. , 2004, Journal of proteome research.

[11]  Michael E Phelps,et al.  Systems Biology and New Technologies Enable Predictive and Preventative Medicine , 2004, Science.

[12]  W J Freeman,et al.  Biocomplexity: adaptive behavior in complex stochastic dynamical systems. , 2001, Bio Systems.

[13]  W. Kolch Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. , 2000, The Biochemical journal.

[14]  P. Sterling Principles of Allostasis: Optimal Design, Predictive Regulation, Pathophysiology, and Rational Therapeutics. , 2004 .

[15]  O Mason,et al.  Graph theory and networks in Biology. , 2006, IET systems biology.

[16]  K. Strange The end of "naive reductionism": rise of systems biology or renaissance of physiology? , 2005, American journal of physiology. Cell physiology.

[17]  James R. Johnson,et al.  Oscillations in NF-κB Signaling Control the Dynamics of Gene Expression , 2004, Science.

[18]  H. Nyquist,et al.  The Regeneration Theory , 1954, Journal of Fluids Engineering.

[19]  A. MacFarlane Information, knowledge and the future of machines , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[21]  Rolf Findeisen,et al.  Relating Cross Gramians and Sensitivity Analysis in Systems Biology , 2006 .

[22]  J. Stelling,et al.  Robustness of Cellular Functions , 2004, Cell.

[23]  M. Tewari,et al.  The Limits of Reductionism in Medicine: Could Systems Biology Offer an Alternative? , 2006, PLoS medicine.

[24]  J. Doyle,et al.  Reverse Engineering of Biological Complexity , 2002, Science.

[25]  A. Goldbeter,et al.  From simple to complex oscillatory behavior in metabolic and genetic control networks. , 2001, Chaos.

[26]  W. Wayt Gibbs,et al.  The unseen genome: gems among the junk. , 2003, Scientific American.

[27]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[28]  D. Lauffenburger,et al.  A Computational Study of Feedback Effects on Signal Dynamics in a Mitogen‐Activated Protein Kinase (MAPK) Pathway Model , 2001, Biotechnology progress.

[29]  W. Wayt Gibbs,et al.  The Unseen Genome: Gems among the Junk.: Gems among the Junk. , 2003 .

[30]  C Reder,et al.  Metabolic control theory: a structural approach. , 1988, Journal of theoretical biology.

[31]  Eva Balsa-Canto,et al.  Power-law models of signal transduction pathways. , 2007, Cellular signalling.

[32]  Christopher C. Moser,et al.  Natural engineering principles of electron tunnelling in biological oxidation–reduction , 1999, Nature.

[33]  Olaf Wolkenhauer,et al.  An abstract cell model that describes the self-organization of cell function in living systems. , 2007, Journal of theoretical biology.

[34]  Keli Xu,et al.  Calcium oscillations increase the efficiency and specificity of gene expression , 1998, Nature.

[35]  P. E. Wellstead,et al.  Analysis and redesign of an antilock brake system controller , 1997 .

[36]  J. Downward The ins and outs of signalling , 2001, Nature.

[37]  H. Kitano,et al.  A comprehensive map of the toll-like receptor signaling network , 2006, Molecular systems biology.

[38]  Dennis Bray,et al.  Bacterial chemotaxis and the question of gain , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  P. Dorato,et al.  Non-fragile controller design: an overview , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[40]  J. Mattick,et al.  Non-coding RNA. , 2006, Human molecular genetics.

[41]  Martyn Amos,et al.  Genesis Machines: The New Science of Biocomputing , 2006 .

[42]  B. Ingalls A Frequency Domain Approach to Sensitivity Analysis of Biochemical Networks , 2004 .

[43]  Roger Y. Tsien,et al.  Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression , 1998, Nature.

[44]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[45]  Corrado Priami,et al.  Logical Analysis of Biological Systems , 2004, Fundam. Informaticae.

[46]  Kevin Burrage,et al.  Stochastic approaches for modelling in vivo reactions , 2004, Comput. Biol. Chem..

[47]  Rui Alves,et al.  Tools for kinetic modeling of biochemical networks , 2006, Nature Biotechnology.

[48]  M. Tewari,et al.  The Clinical Applications of a Systems Approach , 2006, PLoS medicine.

[49]  J. Doyle,et al.  Robust perfect adaptation in bacterial chemotaxis through integral feedback control. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Y. Lazebnik Can a biologist fix a radio? -- Or, what I learned while studying apoptosis, (Cancer Cell. 2002 Sep;2(3):179-82). , 2002, Biochemistry. Biokhimiia.

[51]  A. Schnitzler,et al.  Normal and pathological oscillatory communication in the brain , 2005, Nature Reviews Neuroscience.

[52]  Selvanathan A. L. Narainasamy The Virtual Heart , 2005, iiWAS.

[53]  E.W. Jacobsen,et al.  Identifying feedback mechanisms behind complex cell behavior , 2004, IEEE Control Systems.

[54]  Eduardo D. Sontag,et al.  Molecular Systems Biology and Control , 2005, Eur. J. Control.

[55]  Reinhart Heinrich,et al.  Mathematical models of protein kinase signal transduction. , 2002, Molecular cell.

[56]  Mats Jirstrand,et al.  Systems biology Systems Biology Toolbox for MATLAB : a computational platform for research in systems biology , 2006 .

[57]  Reinhart Heinrich,et al.  A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. , 1974, European journal of biochemistry.

[58]  Ravi Iyengar,et al.  Modeling Signaling Networks , 2002, Science.

[59]  B. Palsson,et al.  Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use , 1994, Bio/Technology.

[60]  S. L. Wong,et al.  Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network , 2005, Journal of biology.

[61]  Herbert M Sauro,et al.  Sensitivity analysis of stoichiometric networks: an extension of metabolic control analysis to non-steady state trajectories. , 2003, Journal of theoretical biology.

[62]  Vikas Swarup,et al.  Q and A , 2005 .

[63]  Peter J. Hunter,et al.  Multiscale modeling: physiome project standards, tools, and databases , 2006, Computer.

[64]  Katherine C. Chen,et al.  Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. , 2003, Current opinion in cell biology.

[65]  P. Hunter,et al.  Integration from proteins to organs: the Physiome Project , 2003, Nature Reviews Molecular Cell Biology.

[66]  C. Priami,et al.  Logical analisys of biological systems , 2005 .

[67]  A. Mogilner,et al.  Quantitative modeling in cell biology: what is it good for? , 2006, Developmental cell.

[68]  Barbara Di Ventura,et al.  From in vivo to in silico biology and back , 2006, Nature.

[69]  P. McSharry,et al.  Mathematical and computational techniques to deduce complex biochemical reaction mechanisms. , 2004, Progress in biophysics and molecular biology.