Alkoxides of group 4 metals containing the bis(imino)phenoxide ligand: synthesis, structural characterization and polymerization studies

A variety of group 4 metal compounds containing the bis(imino)phenoxide backbone were synthesized from the reaction of suitable ligands and group 4 metal alkoxides. They were completely characterized with different spectroscopic techniques and single-crystal X-ray diffraction studies on a few of them. These compounds were found extremely active towards the bulk polymerization of e-caprolactone (CL), δ-valerolactone (VL), rac-butyrolactone (rac-BL), L-lactide (L-LA) and rac-lactide (rac-LA) yielding polymers with high number average molecular weight (Mn) and controlled molecular weight distribution (MWD). The kinetics and mechanistic studies associated with these polymerizations have been performed. In addition, the catalytic activity of these compounds towards the polymerization of ethylene was investigated.

[1]  I. Goldberg,et al.  Bis(aniline–phenolate) complexes of group 4 metals: Coordination chemistry and lactide polymerization catalysis , 2011 .

[2]  J. Fernández-Baeza,et al.  Stereoselective Production of Poly(rac-lactide) by ROP with Highly Efficient Bulky Heteroscorpionate Alkylmagnesium Initiators , 2011 .

[3]  D. Chakraborty,et al.  Salen complexes of zirconium and hafnium: synthesis, structural characterization, controlled hydrolysis, and solvent-free ring-opening polymerization of cyclic esters and lactides. , 2011, Inorganic chemistry.

[4]  Matthew D. Jones,et al.  Crystallographic characterisation of Ti(IV) piperazine complexes and their exploitation for the ring opening polymerisation of rac-lactide. , 2011, Dalton transactions.

[5]  D. Chakraborty,et al.  Aryloxy and benzyloxy compounds of zirconium: Synthesis, structural characterization and studies on solvent-free ring-opening polymerization of ɛ-caprolactone and δ-valerolactone , 2011 .

[6]  D. Chakraborty,et al.  Aryloxy and benzyloxy compounds of hafnium: Synthesis, structural characterization and studies on solvent-free ring-opening polymerization of ε-caprolactone and δ-valerolactone , 2010 .

[7]  P. Mountford,et al.  Ligand Variations in New Sulfonamide-Supported Group 4 Ring-Opening Polymerization Catalysts , 2010 .

[8]  Guofu Zi,et al.  Synthesis, structure, and catalytic activity of titanium complexes with new chiral 11,12-diamino-9,10-dihydro-9,10-ethanoanthracene-based ligands , 2010 .

[9]  D. Chakraborty,et al.  Bis(imino)phenoxide complexes of zirconium: synthesis, structural characterization and solvent-free ring-opening polymerization of cyclic esters and lactides. , 2010, Dalton transactions.

[10]  Mei Wang,et al.  Preparation and structures of enantiomeric dinuclear zirconium and hafnium complexes containing two homochiral N atoms, and their catalytic property for polymerization of rac-lactide. , 2010, Dalton transactions.

[11]  I. Goldberg,et al.  Dithiodiolate ligands: group 4 complexes and application in lactide polymerization. , 2010, Inorganic chemistry.

[12]  Matthew D. Jones,et al.  New titanium and zirconium initiators for the production of polylactide , 2010 .

[13]  M. Stanford,et al.  Stereocontrolled ring-opening polymerisation of lactide. , 2010, Chemical Society reviews.

[14]  Christophe M. Thomas Stereocontrolled ring-opening polymerization of cyclic esters: synthesis of new polyester microstructures. , 2010, Chemical Society reviews.

[15]  W. Thielemans,et al.  Synthesis of polycaprolactone: a review. , 2009, Chemical Society reviews.

[16]  G. Coates,et al.  New facets of an old ligand: titanium and zirconium complexes of phenylenediamine bis(phenolate) in lactide polymerisation catalysis. , 2009, Chemical communications.

[17]  Matthew D. Jones,et al.  Novel Ti(IV) and Zr(IV) complexes and their application in the ring-opening polymerisation of cyclic esters. , 2009, Dalton transactions.

[18]  Joseph A. Wright,et al.  Synthesis and structures of complexes with axially chiral isoquinolinyl-naphtholate ligands. , 2009, Dalton transactions.

[19]  P. Mountford,et al.  Sulfonamide-supported group 4 catalysts for the ring-opening polymerization of epsilon-caprolactone and rac-lactide. , 2009, Inorganic chemistry.

[20]  D. Chakraborty,et al.  New Aryloxy and Benzyloxy Derivatives of Titanium as Catalysts for Bulk Ring-Opening Polymerization of ϵ-Caprolactone and δ-Valerolactone , 2009 .

[21]  Paul G. Hayes,et al.  Complexes of Mg, Ca and Zn as homogeneous catalysts for lactide polymerization. , 2009, Dalton transactions.

[22]  E. Shin,et al.  Characteristics of heterogeneous titanium alkoxide catalysts for ring-opening polymerization of lactide to produce polylactide , 2009 .

[23]  Martin Nieger,et al.  New Sn(IV) and Ti(IV) bis(trimethylsilyl)amides in d,l-lactide polymerization, SEM characterization of polymers , 2008 .

[24]  Guofu Zi,et al.  Lanthanide and group 4 metal complexes with new chiral biaryl-based NNO-donor ligands. , 2008, Dalton transactions.

[25]  E. Chen,et al.  Neutral Metallocene Ester Enolate and Non-Metallocene Alkoxy Complexes of Zirconium for Catalytic Ring-Opening Polymerization of Cyclic Esters , 2008 .

[26]  M. Duarte,et al.  trans-Disubstituted diamido/diamine cyclam zirconium complexes , 2008 .

[27]  S. Szafert,et al.  Titanium and zirconium benzofuranoxides. Crystal structures and catalytic properties. , 2008, Dalton transactions.

[28]  Matthew D. Jones,et al.  Highly active and stereoselective zirconium and hafnium alkoxide initiators for solvent-free ring-opening polymerization of rac-lactide. , 2008, Chemical communications.

[29]  Matthew D. Jones,et al.  Robust chiral zirconium alkoxide initiators for the room-temperature stereoselective ring-opening polymerisation of rac-lactide. , 2008, Dalton transactions.

[30]  Charlotte K. Williams,et al.  Biocompatible Initiators for Lactide Polymerization , 2008 .

[31]  Junseong Lee,et al.  Novel chlorotitanium complexes containing chiral tridentate schiff base ligands for ring-opening polymerization of lactide. , 2007, Inorganic chemistry.

[32]  Y. Ko,et al.  Titanatranes containing tetradentate ligands with controlled steric hindrance , 2007 .

[33]  N. Long,et al.  Synthesis of 1,1‘-Ferrocenediyl Salicylaldimine Ligands and Their Application in Titanium-Initiated Lactide Polymerization , 2007 .

[34]  M. Eisen,et al.  Titanium and Zirconium Complexes for Polymerization of Propylene and Cyclic Esters , 2007 .

[35]  S. M. Humphrey,et al.  Titanium, zinc and alkaline-earth metal complexes supported by bulky O,N,N,O-multidentate ligands: syntheses, characterisation and activity in cyclic ester polymerisation. , 2006, Dalton transactions.

[36]  A. F. Johnson,et al.  Group 4 Complexes with Aminebisphenolate Ligands and Their Application for the Ring Opening Polymerization of Cyclic Esters , 2006 .

[37]  Philippe Dubois,et al.  From controlled ring-opening polymerization to biodegradable aliphatic polyester: Especially poly(β-malic acid) derivatives , 2006 .

[38]  C. Chuck,et al.  Air-stable titanium alkoxide based metal-organic framework as an initiator for ring-opening polymerization of cyclic esters. , 2006, Inorganic chemistry.

[39]  A. White,et al.  Titanium-salen complexes as initiators for the ring opening polymerisation of rac-lactide. , 2006, Dalton transactions.

[40]  H. Lee,et al.  Synthesis and Characterization of Zirconium and Hafnium Aryloxide Compounds and Their Reactivity Towards Lactide and ϵ-Caprolactone Polymerization , 2006 .

[41]  I. Goldberg,et al.  Titanium and zirconium complexes of dianionic and trianionic amine-phenolate-type ligands in catalysis of lactide polymerization. , 2006, Inorganic chemistry.

[42]  T. Roisnel,et al.  Highly active, productive, and syndiospecific yttrium initiators for the polymerization of racemic beta-butyrolactone. , 2006, Angewandte Chemie.

[43]  Jincai Wu,et al.  Recent developments in main group metal complexes catalyzed/initiated polymerization of lactides and related cyclic esters , 2006 .

[44]  A. J. Blake,et al.  Bifunctional yttrium(III) and titanium(IV) NHC catalysts for lactide polymerisation. , 2006, Chemical communications.

[45]  Matthew D. Jones,et al.  Group 4 complexes of amine bis(phenolate)s and their application for the ring opening polymerisation of cyclic esters. , 2006, Dalton transactions.

[46]  P. Cassagnau,et al.  Ring-Opening Polymerization of ε-Caprolactone Initiated with Titanium n-Propoxide or Titanium Phenoxide , 2006 .

[47]  K. Gibbins,et al.  Stereoselective Controlled Polymerization of dl-Lactide with [Ti(trisphenolate)O-i-Pr]2 Initiators , 2005 .

[48]  J. Verkade,et al.  Living polymerization of lactide using titanium alkoxide catalysts , 2005 .

[49]  Odile Dechy-Cabaret,et al.  Controlled ring-opening polymerization of lactide and glycolide. , 2004, Chemical reviews.

[50]  P. Dobrzyński Initiation process of L‐lactide polymerization carried out with zirconium(IV) acetylacetonate , 2004 .

[51]  Y. Takashima,et al.  Bis(amido)titanium complexes having chelating diaryloxo ligands bridged by sulfur or methylene and their catalytic behaviors for ring-opening polymerization of cyclic esters , 2004 .

[52]  M. Eisen,et al.  β-Diketiminate complexes of Group 4: active complexes for the isomerization of α-olefins and the polymerization of propylene towards elastomeric polypropylene , 2003 .

[53]  Wen‐Hua Sun,et al.  Synthesis, Characterization, and Ethylene Oligomerization of 2,6-Bis(imino)phenoxy Cobalt Complexes , 2003 .

[54]  J. Verkade,et al.  Titanium alkoxides as initiators for the controlled polymerization of lactide. , 2003, Inorganic chemistry.

[55]  R. Semiat,et al.  Group 4 octahedral benzamidinate complexes: syntheses, structures, and catalytic activities in the polymerization of propylene modulated by pressure. , 2003, Journal of the American Chemical Society.

[56]  Wen‐Hua Sun,et al.  Crystal structure and modeling calculation of the columnar helix 2,6-Bis(imino)phenoxy iron(III) chloride , 2003 .

[57]  David A. Glassner,et al.  Applications of life cycle assessment to NatureWorks polylactide (PLA) production , 2003 .

[58]  V. C. Gibson,et al.  Advances in non-metallocene olefin polymerization catalysis. , 2003, Chemical reviews.

[59]  J. Verkade,et al.  A Tetrameric Titanium Alkoxide as a Lactide Polymerization Catalyst , 2002 .

[60]  R. Gross,et al.  Biodegradable polymers for the environment. , 2002, Science.

[61]  R. Waymouth,et al.  2-Arylindene metallocenes: conformationally dynamic catalysts to control the structure and properties of polypropylenes. , 2002, Accounts of chemical research.

[62]  J. Verkade,et al.  Novel Titanatranes with Different Ring Sizes: Syntheses, Structures, and Lactide Polymerization Catalytic Capabilities , 2002 .

[63]  G. Coates Polymerization catalysis at the millennium: frontiers in stereoselective, metal-catalyzed polymerization , 2002 .

[64]  Stephen K. Ritter,et al.  Widening the road for C-C bonds: Refined catalysts for C-H bond activation hold promise for improved C-C coupling reactions , 2002 .

[65]  M. Okada Chemical syntheses of biodegradable polymers , 2002 .

[66]  A. Albertsson,et al.  Aliphatic Polyesters: Synthesis, Properties and Applications , 2002 .

[67]  T. Ikeda,et al.  Living Polymerization of Propene with a Chelating Diamide Complex of Titanium Using Dried Methylaluminoxane , 2002 .

[68]  R. Schrock,et al.  Kinetic Investigation of the Polymerization of 1-Hexene by the {[t-BuNON]ZrMe}[B(C6F5)4] Initiator , 2001 .

[69]  L. Sita,et al.  Direct methyl group exchange between cationic zirconium Ziegler-Natta initiators and their living polymers: ramifications for the production of stereoblock polyolefins. , 2001, Journal of the American Chemical Society.

[70]  N. Kashiwa,et al.  Living Polymerization of Ethylene with a Titanium Complex Containing Two Phenoxy-Imine Chelate Ligands. , 2001, Angewandte Chemie.

[71]  R. Schrock,et al.  Cationic Zirconium Complexes that Contain Mesityl-Substituted Diamido/Donor Ligands. Decomposition via CH Activation and Its Influence on 1-Hexene Polymerization , 2001 .

[72]  T. Nakano,et al.  A Family of Zirconium Complexes Having Two Phenoxy−Imine Chelate Ligands for Olefin Polymerization , 2001 .

[73]  Z. Goldschmidt,et al.  Zirconium Complexes of Amine−Bis(phenolate) Ligands as Catalysts for 1-Hexene Polymerization: Peripheral Structural Parameters Strongly Affect Reactivity , 2001 .

[74]  L. Sita,et al.  Dramatic enhancement of activities for living Ziegler-Natta polymerizations mediated by "exposed" zirconium acetamidinate initiators: the isospecific living polymerization of vinylcyclohexane. , 2001, Journal of the American Chemical Society.

[75]  †. H. Kim,et al.  Sterically Controlled Silacycloalkyl Diamide Complexes of Titanium(IV): Synthesis, Structure, and Catalytic Behavior of (cycl)Si(NBut)2TiCl2 [(cycl)Si = Silacyclobutane, Silacyclopentane, Silacyclopentene, and Silacyclohexane] , 2001 .

[76]  H. Kricheldorf,et al.  Syntheses and application of polylactides. , 2001, Chemosphere.

[77]  N. Kashiwa,et al.  Ethylene polymerization activity under practical conditions displayed by zirconium complexes having two phenoxy-imine chelate ligands , 2001 .

[78]  A. Pombeiro,et al.  Syntheses, structure, and reactivity of chiral titanium compounds: procatalysts for olefin polymerization. , 2001, Chemistry.

[79]  R. Schrock,et al.  CH Bond Activation in Cations of the Type {[(2,4,6-Me3C6H2NCH2CH2)2NMe]ZrR}+ and a Simple Solution that Yields a Catalyst for the Living Polymerization of 1-Hexene , 2001 .

[80]  M. Hillmyer,et al.  Polymerization of lactide and related cyclic esters by discrete metal complexes , 2001 .

[81]  P. Hitchcock,et al.  Synthesis, structures and catalytic properties of chelating N,N′-bis(silylated) 1,2-benzenediamidozirconium(IV) chlorides [and a titanium(IV) analogue] and dimethylamides , 2001 .

[82]  L. Gade Taming early transition metals: the use of polydentate amido-donor ligands to create well defined reactive sites in reagents and catalysts , 2010 .

[83]  P. Gruber,et al.  Polylactic Acid Technology , 2000 .

[84]  M. Kol,et al.  Isospecific Living Polymerization of 1-Hexene by a Readily Available Nonmetallocene C2-Symmetrical Zirconium Catalyst , 2000 .

[85]  R. Schrock,et al.  A Comparison of Cationic Zirconium Methyl and Isobutyl Initiators that Contain an Arylated Diamido-Pyridine Ligand for Polymerization of 1-Hexene. Elucidation of a Dramatic “Initiator Effect” , 2000 .

[86]  J. Kress,et al.  Zirconium−Benzyl Complexes of a Tridentate C2-Symmetric Dialkoxo Ligand. Diastereoselectivity of Olefin Single-Insertion Reactions , 2000 .

[87]  A. Harada,et al.  Titanium Complexes Having Chelating Diaryloxo Ligands Bridged by Tellurium and Their Catalytic Behavior in the Polymerization of Ethylene , 2000 .

[88]  Y. Imanishi,et al.  Copolymerization of ethylene with α-olefin catalyzed by [1,8-C10H6(NsitBuMe2)2]TiCl2 and [ArN(CH2)3NAr]TiCl2 (Ar = 2,6-iPr2C6H3)-MMAO catalyst systems , 2000 .

[89]  Y. Ikada,et al.  Biodegradable polyesters for medical and ecological applications , 2000 .

[90]  T. Aida,et al.  Bulky Titanium Bis(phenolate) Complexes as Novel Initiators for Living Anionic Polymerization of ε-Caprolactone , 2000 .

[91]  L. Sita,et al.  Stereospecific Living Ziegler−Natta Polymerization of 1-Hexene , 2000 .

[92]  Joon Won Park,et al.  Zirconium(IV) Complexes Having a Rigid 1,8-Naphthalene Diamide versus a Flexible 1,3-Propylene Diamide for Olefin Polymerization , 2000 .

[93]  I. Goldberg,et al.  Zirconium complexes of chelating dianionic bis(pentafluorophenylamido) ligands: synthesis, structure and ethylene polymerisation activity , 1999 .

[94]  W. M. Davis,et al.  Synthesis of Titanium, Zirconium, and Hafnium Complexes that Contain Diamido Donor Ligands of the Type [(t-BuN-o-C6H4)2O]2- and an Evaluation of Activated Versions for the Polymerization of 1-Hexene , 1999 .

[95]  W. M. Davis,et al.  Synthesis of group 4 complexes that contain the diamidoamine ligands, [(2,4,6-Me{sub 3}C{sub 6}H{sub 2}NCH{sub 2}CH{sub 2}){sub 2}NR]{sup 2{minus}} ([Mes{sub 2}N{sub 2}NR]{sup 2{minus}}; R = H or CH{sub 3}), and polymerization of 1-hexene by activated [Mes{sub 2}N{sub 2}NR]ZrMe{sub 2} complexes , 1999 .

[96]  W. M. Davis,et al.  Synthesis of Zirconium Complexes Containing the Tridentate Diamido Ligands [(t-Bu-d6-N-o-C6H4)2S]2- and [(i-PrN-o-C6H4)2S]2- , 1999 .

[97]  R. Waymouth,et al.  Elastomeric Polypropylenes from Unbridged (2-Phenylindene)zirconocene Catalysts: Thermal Characterization and Mechanical Properties , 1998 .

[98]  G. Fuller,et al.  Rheological and Thermal Properties of Elastomeric Polypropylene , 1998 .

[99]  M. Eisen,et al.  Pressure Modulates Stereoregularities in the Polymerization of Propylene Promoted by rac-Octahedral Heteroallylic Complexes , 1998 .

[100]  M. Eisen,et al.  Metallocene analogues containing bulky heteroallylic ligands and their use as new olefin polymerization catalysts , 1998 .

[101]  A. Segre,et al.  C2-symmetric ansa-metallocene catalysts for propene polymerization: Stereoselectivity and enantioselectivity , 1998 .

[102]  R. Waymouth,et al.  STRATEGIES FOR SYNTHESIS OF ELASTOMERIC POLYPROPYLENE : FLUXIONAL METALLOCENES WITH C1-SYMMETRY , 1998 .

[103]  R. Waymouth,et al.  Ethylene-propylene copolymerization with 2-arylindene zirconocenes , 1998 .

[104]  J. Lunt Large-scale production, properties and commercial applications of polylactic acid polymers , 1998 .

[105]  R. Waymouth,et al.  Propylene Polymerization with Unbridged Metallocenes: Ligand Effects on the Selectivity for Elastomeric Polypropylene , 1997 .

[106]  J. Ziller,et al.  Effect of Metal on the Stereospecificity of 2-Arylindene Catalysts for Elastomeric Polypropylene , 1997 .

[107]  R. Waymouth,et al.  PROPYLENE POLYMERIZATION WITH CHIRAL AND ACHIRAL UNBRIDGED 2-ARYLINDENE METALLOCENES , 1997 .

[108]  S. Mathur,et al.  Synthesis, reactivity and structures of hafnium-containing homo- andhetero- (bi- and tri-) metallic alkoxides based on edge- andface-sharing bioctahedral alkoxometalateligands , 1997 .

[109]  M. Eisen,et al.  Synthesis, characterization and reactivity of amido titanium and zirconium complexes , 1996 .

[110]  D. H. Mcconville,et al.  Polymerization of α-olefins by chelating diamide complexes of titanium , 1996 .

[111]  P. Hitchcock,et al.  Novel zirconium complexes derivedfrom C2-symmetric diamide ligands; the X-ray crystal structure of [Zr(η1-CH2Ph)(η2-CH2Ph){(C6H3)2-2,2′-(NCH2C6H4Ph-4)2-6, 6′-Me2}] , 1996 .

[112]  J. Ziller,et al.  Stereoblock Polypropylene: Ligand Effects on the Stereospecificity of 2-Arylindene Zirconocene Catalysts , 1995 .

[113]  G. Coates,et al.  Oscillating Stereocontrol: A Strategy for the Synthesis of Thermoplastic Elastomeric Polypropylene , 1995, Science.

[114]  N. Scharnagl,et al.  Poly(lactones). 9. Polymerization mechanism of metal alkoxide initiated polymerizations of lactide and various lactones , 1988 .

[115]  W. Kaminsky,et al.  “Living Polymers” on Polymerization with Extremely Productive Ziegler Catalysts , 1980 .

[116]  G. Natta Stereospezifische Katalysen und isotaktische Polymere , 1956 .

[117]  Hans-Dieter Martin,et al.  Das Mülheimer Normaldruck‐Polyäthylen‐Verfahren , 1955 .

[118]  P. Corradini,et al.  CRYSTALLINE HIGH POLYMERS OF α-OLEFINS , 1955 .