A Study into Digital Dermatitis Transmission and Bacterial Associated Pathological Changes Involved in the Disease

Digital dermatitis is a highly prevalent painful lesion affecting the feet in dairy cattle. Even though the pathogenesis has been subject of investigation since 1974, there is still a lack of knowledge about the spread of the disease among cows within a herd as well as between herds. The purpose of this study was to monitor transmission of digital dermatitis under experimental conditions between naive heifers and affected animals, to monitor the changes in clinical appearance, microbial colonisation of the skin as lesions progressed and to apply a q-PCR for the detection of Treponema spp. in faecal samples. Eight heifers with clinical normal digital skin were housed with 5 heifers with severe digital dermatitis lesion for 8 weeks on a solid concrete floor with an accumulating layer of slurry. Digital skin was examined daily and lesions were clinically scored. Skin biopsies were taken from the healthy heifers at introduction and weekly from all lesions for histopathological evaluation and fluorescence in situ hybridization. None of the healthy heifers developed digital dermatitis and in 4 out of 5 infected heifers the lesions healed during the study. All samples from healthy skin were negative for Treponema spp. and one sample were positive for Dichelobacter nodosus. Colonization of healthy skin could not be identified in this study. There was no significant relation between clinical scoring of the lesions and histopathological score and the presence of Treponema spp. There were however a significant relation between the prevalence of Treponema spp. in the skin and severity of changes in epidermis and dermis. By qPCR all the healthy heifers were found to excrete Treponema spp. in their faeces.

[1]  N. Capion,et al.  Bovine digital dermatitis: possible pathogenic consortium consisting of Dichelobacter nodosus and multiple Treponema species. , 2012, Veterinary microbiology.

[2]  C. Ekstrøm,et al.  Infection dynamics of digital dermatitis in first-lactation Holstein cows in an infected herd. , 2012, Journal of dairy science.

[3]  D. Döpfer,et al.  An experimental infection model to induce digital dermatitis infection in cattle. , 2012, Journal of dairy science.

[4]  C. Hart,et al.  Characterization of Novel Bovine Gastrointestinal Tract Treponema Isolates and Comparison with Bovine Digital Dermatitis Treponemes , 2010, Applied and Environmental Microbiology.

[5]  Tetsuya Hayashi,et al.  Genetic Heterogeneity among Strains of Treponema phagedenis-Like Spirochetes Isolated from Dairy Cattle with Papillomatous Digital Dermatitis in Japan , 2009, Journal of Clinical Microbiology.

[6]  C. Hart,et al.  Association of Unique, Isolated Treponemes with Bovine Digital Dermatitis Lesions , 2009, Journal of Clinical Microbiology.

[7]  M. Nordhoff,et al.  High prevalence of treponemes in bovine digital dermatitis-a molecular epidemiology. , 2008, Veterinary microbiology.

[8]  C. Hart,et al.  Three unique groups of spirochetes isolated from digital dermatitis lesions in UK cattle. , 2008, Veterinary microbiology.

[9]  S. Thamsborg,et al.  Prevalence of foot lesions in Danish Holstein cows , 2008, Veterinary Record.

[10]  Tim K. Jensen,et al.  Evidence of Multiple Treponema Phylotypes Involved in Bovine Digital Dermatitis as Shown by 16S rRNA Gene Analysis and Fluorescence In Situ Hybridization , 2008, Journal of Clinical Microbiology.

[11]  K. Frankena,et al.  Herd- and cow-level prevalence of digital dermatitis in the Netherlands and associated risk factors. , 2006, Journal of dairy science.

[12]  T. Stanton,et al.  Treponema bryantii sp. nov., a rumen spirochete that interacts with cellulolytic bacteria , 1980, Archives of Microbiology.

[13]  T. Marsh,et al.  Characterization of the predominant anaerobic bacterium recovered from digital dermatitis lesions in three Michigan dairy cows. , 2003, Anaerobe.

[14]  J. Goff,et al.  Characterization of Treponema phagedenis-Like Spirochetes Isolated from Papillomatous Digital Dermatitis Lesions in Dairy Cattle , 2003, Journal of Clinical Microbiology.

[15]  T. Shibahara,et al.  Concurrent spirochaetal infections of the feet and colon of cattle in Japan. , 2002, Australian veterinary journal.

[16]  R. Laven Control of digital dermatitis in cattle , 2001, In Practice.

[17]  D. Hird,et al.  Farm- and host-level risk factors for papillomatous digital dermatitis in Chilean dairy cattle. , 1999, Preventive veterinary medicine.

[18]  D. Read,et al.  Papillomatous Digital Dermatitis (Footwarts) in California Dairy Cattle: Clinical and Gross Pathologic Findings , 1998, Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc.

[19]  D. Hird,et al.  Papillomatous digital dermatitis on a commercial dairy farm in Mexicali, Mexico: incidence and effect on reproduction and milk production. , 1997, Preventive veterinary medicine.

[20]  W. Klee,et al.  Histological and bacteriological evaluation of digital dermatitis in cattle, with special reference to spirochaetes and Campylobacter faecalis , 1997, Veterinary Record.

[21]  D. Sprecher,et al.  A lameness scoring system that uses posture and gait to predict dairy cattle reproductive performance. , 1997, Theriogenology.

[22]  U. Göbel,et al.  Spirochetes from digital dermatitis lesions in cattle are closely related to treponemes associated with human periodontitis. , 1997, International journal of systematic bacteriology.

[23]  D. Hird,et al.  Papillomatous digital dermatitis in 458 dairies. , 1996, Journal of the American Veterinary Medical Association.

[24]  M. Doherty,et al.  Bovine digital dermatitis , 1990, Veterinary Record.

[25]  B. Paster,et al.  Treponema saccharophilum sp. nov., a large pectinolytic spirochete from the bovine rumen , 1985, Applied and environmental microbiology.