Propagation properties of Hot Flow Anomalies at Mars: MAVEN observations
暂无分享,去创建一个
[1] D. Baker,et al. Autogenous and efficient acceleration of energetic ions upstream of Earth’s bow shock , 2018, Nature.
[2] P. Louarn,et al. Hot flow anomaly observed at Jupiter's bow shock , 2017 .
[3] B. Jakosky,et al. Structure, dynamics, and seasonal variability of the Mars‐solar wind interaction: MAVEN Solar Wind Ion Analyzer in‐flight performance and science results , 2017 .
[4] O. Vaisberg,et al. Origin of the backstreaming ions in a young Hot Flow Anomaly , 2016, 1607.03314.
[5] J. Rouzaud,et al. The MAVEN Solar Wind Electron Analyzer , 2016 .
[6] Bruce M. Jakosky,et al. The Solar Wind Ion Analyzer for MAVEN , 2015 .
[7] B. Jakosky,et al. MAVEN SupraThermal and Thermal Ion Compostion (STATIC) Instrument , 2015 .
[8] B. Jakosky,et al. A hot flow anomaly at Mars , 2015 .
[9] J. Connerney,et al. The MAVEN Magnetic Field Investigation , 2015 .
[10] H. Zhang,et al. Propagation characteristics of young hot flow anomalies near the bow shock: Cluster observations , 2015 .
[11] Ronald J. Oliversen,et al. First results of the MAVEN magnetic field investigation , 2015 .
[12] N. Shane,et al. A survey of hot flow anomalies at Venus , 2014 .
[13] Q. Zong,et al. Hot flow anomaly formation and evolution: Cluster observations , 2013 .
[14] B. Anderson,et al. Active current sheets and candidate hot flow anomalies upstream of Mercury's bow shock , 2013, 1306.5001.
[15] James A. Slavin,et al. Hot Flow Anomalies at Venus , 2012 .
[16] V. Angelopoulos,et al. Time History of Events and Macroscale Interactions during Substorms observations of a series of hot flow anomaly events , 2010 .
[17] S. Schwartz,et al. Hot flow anomalies at Saturn's bow shock , 2009 .
[18] Z. Németh,et al. A global study of hot flow anomalies using Cluster multi-spacecraft measurements , 2009, 1807.07368.
[19] K. Glassmeier,et al. THEMIS observations of a hot flow anomaly: Solar wind, magnetosheath, and ground‐based measurements , 2008 .
[20] J. Waite,et al. HFA-like signatures observed with interball-tail spacecraft , 2008 .
[21] S. Schwartz,et al. Cassini encounters with hot flow anomaly‐like phenomena at Saturn's bow shock , 2008 .
[22] S. Solomon,et al. MESSENGER and Venus Express observations of the solar wind interaction with Venus , 2007 .
[23] M. Acuna,et al. Martian shock and magnetic pile-up boundary positions and shapes determined from the Phobos 2 and Mars Global Surveyor data sets , 2004 .
[24] T. Horbury,et al. Cluster observations of hot flow anomalies , 2004 .
[25] E. Smith. The heliospheric current sheet , 2001 .
[26] D. Mitchell,et al. Hot diamagnetic cavities upstream of the Martian bow shock , 2001 .
[27] M. Dunlop,et al. Conditions for the formation of hot flow anomalies at Earth's bow shock , 2000 .
[28] W. Feldman,et al. Interplanetary discontinuities and Alfvén waves , 1995 .
[29] M. Thomsen,et al. Hybrid simulation of the formation of a hot flow anomaly , 1991 .
[30] D. Burgess. On the effect of a tangential discontinuity on ions specularly reflected at an oblique shock , 1989 .
[31] C. Russell,et al. Hot, diamagnetic cavities upstream from the Earth's bow shock , 1986 .
[32] S. Schwartz,et al. An active current sheet in the solar wind , 1985, Nature.
[33] P. D. Hudson,et al. Discontinuities in an anisotropic plasma and their identification in the solar wind , 1970 .