Propagation properties of Hot Flow Anomalies at Mars: MAVEN observations

[1]  D. Baker,et al.  Autogenous and efficient acceleration of energetic ions upstream of Earth’s bow shock , 2018, Nature.

[2]  P. Louarn,et al.  Hot flow anomaly observed at Jupiter's bow shock , 2017 .

[3]  B. Jakosky,et al.  Structure, dynamics, and seasonal variability of the Mars‐solar wind interaction: MAVEN Solar Wind Ion Analyzer in‐flight performance and science results , 2017 .

[4]  O. Vaisberg,et al.  Origin of the backstreaming ions in a young Hot Flow Anomaly , 2016, 1607.03314.

[5]  J. Rouzaud,et al.  The MAVEN Solar Wind Electron Analyzer , 2016 .

[6]  Bruce M. Jakosky,et al.  The Solar Wind Ion Analyzer for MAVEN , 2015 .

[7]  B. Jakosky,et al.  MAVEN SupraThermal and Thermal Ion Compostion (STATIC) Instrument , 2015 .

[8]  B. Jakosky,et al.  A hot flow anomaly at Mars , 2015 .

[9]  J. Connerney,et al.  The MAVEN Magnetic Field Investigation , 2015 .

[10]  H. Zhang,et al.  Propagation characteristics of young hot flow anomalies near the bow shock: Cluster observations , 2015 .

[11]  Ronald J. Oliversen,et al.  First results of the MAVEN magnetic field investigation , 2015 .

[12]  N. Shane,et al.  A survey of hot flow anomalies at Venus , 2014 .

[13]  Q. Zong,et al.  Hot flow anomaly formation and evolution: Cluster observations , 2013 .

[14]  B. Anderson,et al.  Active current sheets and candidate hot flow anomalies upstream of Mercury's bow shock , 2013, 1306.5001.

[15]  James A. Slavin,et al.  Hot Flow Anomalies at Venus , 2012 .

[16]  V. Angelopoulos,et al.  Time History of Events and Macroscale Interactions during Substorms observations of a series of hot flow anomaly events , 2010 .

[17]  S. Schwartz,et al.  Hot flow anomalies at Saturn's bow shock , 2009 .

[18]  Z. Németh,et al.  A global study of hot flow anomalies using Cluster multi-spacecraft measurements , 2009, 1807.07368.

[19]  K. Glassmeier,et al.  THEMIS observations of a hot flow anomaly: Solar wind, magnetosheath, and ground‐based measurements , 2008 .

[20]  J. Waite,et al.  HFA-like signatures observed with interball-tail spacecraft , 2008 .

[21]  S. Schwartz,et al.  Cassini encounters with hot flow anomaly‐like phenomena at Saturn's bow shock , 2008 .

[22]  S. Solomon,et al.  MESSENGER and Venus Express observations of the solar wind interaction with Venus , 2007 .

[23]  M. Acuna,et al.  Martian shock and magnetic pile-up boundary positions and shapes determined from the Phobos 2 and Mars Global Surveyor data sets , 2004 .

[24]  T. Horbury,et al.  Cluster observations of hot flow anomalies , 2004 .

[25]  E. Smith The heliospheric current sheet , 2001 .

[26]  D. Mitchell,et al.  Hot diamagnetic cavities upstream of the Martian bow shock , 2001 .

[27]  M. Dunlop,et al.  Conditions for the formation of hot flow anomalies at Earth's bow shock , 2000 .

[28]  W. Feldman,et al.  Interplanetary discontinuities and Alfvén waves , 1995 .

[29]  M. Thomsen,et al.  Hybrid simulation of the formation of a hot flow anomaly , 1991 .

[30]  D. Burgess On the effect of a tangential discontinuity on ions specularly reflected at an oblique shock , 1989 .

[31]  C. Russell,et al.  Hot, diamagnetic cavities upstream from the Earth's bow shock , 1986 .

[32]  S. Schwartz,et al.  An active current sheet in the solar wind , 1985, Nature.

[33]  P. D. Hudson,et al.  Discontinuities in an anisotropic plasma and their identification in the solar wind , 1970 .