Λ Cold Dark Matter, Stellar Feedback, and the Galactic Halo Abundance Pattern

The hierarchical formation scenario for the stellar halo requires the accretion and disruption of dwarf galaxies, yet low-metallicity halo stars are enriched in � -elements compared to similar, low-metallicity stars in dwarf spheroidal (dSph) galaxies. We address this primary challenge for the hierarchical formation scenario for the stellar halo by combining chemical evolution modeling with cosmologically motivated mass accretion histories for the MilkyWaydarkhaloanditssatellites.Wedemonstratethatstellarhaloanddwarfgalaxyabundancepatternscanbe explained naturally within the CDM framework. Our solution relies fundamentally on the CDM model prediction that the majority of the stars in the stellar halo were formed within a few relatively massive, � 5 ;10 10 M� , dwarf irregular (dIrr) sized dark matter halos, which were accreted and destroyed � 10 Gyr in the past. These systems necessarily have short-lived, rapid star formation histories, are enriched primarily by Type II supernovae, and host stars with enhanced [� /Fe] abundances. In contrast, dwarf dSph galaxies exist within low-mass dark matter hostsof � 10 9 M� , wheresupernovaewindsareimportantin settingtheintermediate[� /Fe]ratios observed. Our model includes enrichment from Type Ia and Type II supernovae, as well as stellar winds, and includes a physicallymotivatedsupernovaefeedbackprescriptioncalibratedtoreproducethelocaldwarfgalaxystellarmass– metallicity relation. We use representative examples of the type of dark matter halos that we expect to host a destroyed ‘‘stellar halo progenitor’’ dwarf, a surviving dIrr, and a surviving dSph galaxy, and show that their derived abundance patterns, stellar masses, and gas masses are consistent with those observed for each type of system. Our model also self-consistently reproduces the observed stellar mass–vcirc relation for local group satellites and produces the correct cumulative mass for the Milky Way stellar halo. We predict that the lowest metallicity stars in intermediate-mass dIrr galaxies such as the SMC and LMC should follow abundance patterns similar to that observed in the stellar halo. Searches for accreted, disrupted, low-mass dwarfs may be enhanced by searching for unbound stars with dSph-like chemical abundance patterns.

[1]  Michael J. Kurtz,et al.  Mapping the Inner Halo of the Galaxy with 2MASS-Selected Horizontal-Branch Candidates , 2003, astro-ph/0309794.

[2]  A. Ferrara,et al.  Starburst-driven Mass Loss from Dwarf Galaxies: Efficiency and Metal Ejection , 1998, astro-ph/9801237.

[3]  Alexander S. Szalay,et al.  Galaxy Clustering in Early Sloan Digital Sky Survey Redshift Data , 2002 .

[4]  Detection of the Main-Sequence Turnoff of a Newly Discovered Milky Way Halo Structure in the Triangulum-Andromeda Region , 2004, astro-ph/0406221.

[5]  E. Tolstoy,et al.  Stellar Chemical Signatures and Hierarchical Galaxy Formation , 2004, astro-ph/0406120.

[6]  F. Ferrini,et al.  Evolution of spiral galaxies. I - Halo-disk connection for the evolution of the solar neighborhood , 1992 .

[7]  M. Livio,et al.  The Local Group as an astrophysical laboratory: The Local Group as an Astrophysical Laboratory , 2006 .

[8]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[9]  C. Chiappini,et al.  Oxygen, carbon and nitrogen evolution in galaxies , 2002, astro-ph/0209627.

[10]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[11]  Pavel Kroupa The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems , 2002, Science.

[12]  V. Smith,et al.  “Sculptor-ing” the Galaxy? The Chemical Compositions of Red Giants in the Sculptor Dwarf Spheroidal Galaxy , 2004, astro-ph/0412065.

[13]  W. Arnett,et al.  The Evolution of Galaxies. II. Chemical Evolution Coefficients , 1973 .

[14]  S. Cole,et al.  Merger rates in hierarchical models of galaxy formation , 1993 .

[15]  J. Fulbright Abundances and Kinematics of Field Halo and Disk Stars. I. Observational Data and Abundance Analysis , 2000, astro-ph/0006260.

[16]  J. B. Laird,et al.  A survey of proper-motion stars. X. The early evolution of the Galaxy's halo , 1990 .

[17]  Yuzuru Yoshii,et al.  Relative frequencies of Type Ia and Type II supernovae in the chemical evolution of the Galaxy, LMC and SMC , 1995 .

[18]  R. Larson Infall of Matter in Galaxies , 1972, Nature.

[19]  Risa H. Wechsler,et al.  The Physics of Galaxy Clustering. I. A Model for Subhalo Populations , 2005 .

[20]  J. Huchra,et al.  Extragalactic Globular Clusters. III. Metallicity Comparisons and Anomalies , 1991 .

[21]  Marc Davis,et al.  The origin of the Magellanic Stream , 1994, astro-ph/9401008.

[22]  R.F.G. Wyse,et al.  The merging history of the Milky Way , 1996 .

[23]  G. Tammann Supernova Statistics and Related Problems , 1982 .

[24]  J. Wheeler,et al.  Abundance Ratios as a Function of Metallicity , 1989 .

[25]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[26]  Matthias Steinmetz,et al.  The Effects of a Photoionizing Ultraviolet Background on the Formation of Disk Galaxies , 1996, astro-ph/9605043.

[27]  J. Ostriker,et al.  A theory of the interstellar medium - Three components regulated by supernova explosions in an inhomogeneous substrate , 1977 .

[29]  D. Weinberg,et al.  Reionization and the Abundance of Galactic Satellites , 2000, astro-ph/0002214.

[30]  University of British Columbia,et al.  Feedback and the fundamental line of low-luminosity low-surface-brightness/dwarf galaxies , 2002, astro-ph/0210454.

[31]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: The Amplitudes of fluctuations in the 2dFGRS and the CMB, and implications for galaxy biasing , 2001, astro-ph/0112162.

[32]  L. Ho,et al.  Active Galactic Nuclei with Candidate Intermediate-Mass Black Holes , 2004, astro-ph/0404110.

[33]  Eva K. Grebel,et al.  The Progenitors of Dwarf Spheroidal Galaxies , 2002, astro-ph/0301025.

[34]  Yannick Mellier,et al.  Detection of Dark Matter Skewness in the VIRMOS-DESCART Survey: Implications for Ω0 , 2003 .

[35]  J. Huchra,et al.  H II regions and the abundance properties of spiral galaxies , 1994 .

[36]  Substructure and Halo Density Profiles in a Warm Dark Matter Cosmology , 2000, astro-ph/0004115.

[37]  Building up the stellar halo of the Galaxy , 1999, astro-ph/9901102.

[38]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[39]  Italy.,et al.  The predicted metallicity distribution of stars in dwarf spheroidal galaxies , 2004, astro-ph/0403602.

[40]  M. Groenewegen,et al.  New theoretical yields of intermediate mass stars , 1996, astro-ph/9610030.

[41]  C. R. James,et al.  Chemical Substructure in the Milky Way Halo: A New Population of Old Stars , 2003 .

[42]  Multiphase galaxy formation: high-velocity clouds and the missing baryon problem , 2004, astro-ph/0406632.

[43]  Masa-Aki Hashimoto,et al.  Core-Collapse Supernovae and Their Ejecta , 1995 .

[44]  A. Cole,et al.  The Metallicity Distribution Function of Red Giants in the Large Magellanic Cloud , 2000, astro-ph/0006327.

[45]  R. Wyse,et al.  Element Ratios and the Formation of the Stellar Halo , 1998, astro-ph/9805144.

[46]  W. Arnett,et al.  Evolution Of Galaxies .2. Chemical Evolution Coefficients , 1973 .

[47]  M. Shetrone,et al.  VLT/UVES Abundances in Four Nearby Dwarf Spheroidal Galaxies. I. Nucleosynthesis and Abundance Ratios , 2002, astro-ph/0211167.

[48]  B. E. Patchett,et al.  Metal Abundances in Nearby Stars and the Chemical History of the Solar Neighbourhood , 1975 .

[49]  H. Bondi,et al.  On spherically symmetrical accretion , 1952 .

[50]  Nicholas B. Suntzeff,et al.  New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics , 2002 .

[51]  D. Weinberg,et al.  Hierarchical Galaxy Formation and Substructure in the Galaxy’s Stellar Halo , 2000, astro-ph/0007295.

[52]  H Germany,et al.  Pristine CNO abundances from Magellanic Cloud B stars - I. The LMC cluster NGC 2004 with UVES , 2002, astro-ph/0201453.

[53]  M. Steinmetz,et al.  Simulations of Galaxy Formation in a Λ Cold Dark Matter Universe. I. Dynamical and Photometric Properties of a Simulated Disk Galaxy , 2002, astro-ph/0211331.

[54]  Garth D. Illingworth,et al.  Discovery of two distant type Ia supernovae in the Hubble Deep Field-North with the advanced camera for surveys , 2003 .

[55]  J. Pier,et al.  Halo Structure Shown by RR Lyrae Stars in the Anticenter Direction , 2004 .

[56]  Daniel H. McIntosh,et al.  A First Estimate of the Baryonic Mass Function of Galaxies , 2003, astro-ph/0301616.

[57]  The Emergence of the Thick Disk in a Cold Dark Matter Universe , 2004, astro-ph/0405306.

[58]  P. François,et al.  Galactic chemical evolution: abundance gradients of individual elements , 1989 .

[59]  J. Silk,et al.  Dwarf galaxies, cold dark matter, and biased galaxy formation , 1986 .

[60]  A. McWilliam Barium Abundances in Extremely Metal-poor Stars , 1998 .

[61]  Mario Mateo,et al.  DWARF GALAXIES OF THE LOCAL GROUP , 1998, astro-ph/9810070.

[62]  T. D. Matteo,et al.  Energy input from quasars regulates the growth and activity of black holes and their host galaxies , 2005, Nature.

[63]  S. Alam,et al.  Dark Matter Properties and Halo Central Densities , 2001, astro-ph/0109392.

[64]  R. Dettmar,et al.  Dwarf galaxies and their environment , 2001 .

[65]  Concentrations of Dark Halos from Their Assembly Histories , 2001, astro-ph/0108151.

[66]  Abundance Patterns in the Draco, Sextans, and Ursa Minor Dwarf Spheroidal Galaxies , 2000, astro-ph/0009505.

[67]  T. D. Matteo,et al.  Modelling feedback from stars and black holes in galaxy mergers , 2004, astro-ph/0411108.

[68]  A. Helmi,et al.  Mapping the Galactic Halo. VI. Spectroscopic Measures of Luminosity and Metallicity , 2003 .

[69]  A. Boesgaard,et al.  Abundances from High-Resolution Spectra of Kinematically Interesting Halo Stars , 2002 .

[70]  V. Hill,et al.  VLT/UVES Abundances in Four Nearby Dwarf Spheroidal Galaxies. II. Implications for Understanding Galaxy Evolution* , 2002 .

[71]  S. van den Bergh,et al.  The frequency of stars with different metal abundances. , 1962 .

[72]  G. Preston,et al.  A Spectroscopic Analysis of 33 of the Most Metal-Poor Stars.I. , 1995 .

[73]  J. Fulbright Abundances and Kinematics of Field Stars. II. Kinematics and Abundance Relationships , 2001, astro-ph/0110164.

[74]  Heather A. Rave,et al.  The Ghost of Sagittarius and Lumps in the Halo of the Milky Way , 2001, astro-ph/0111095.

[75]  L. Ho,et al.  POX 52: A Dwarf Seyfert 1 Galaxy with an Intermediate-Mass Black Hole , 2004, astro-ph/0402110.

[76]  B. Twarog The chemical evolution of the solar neighborhood. II - The age-metallicity relation and the history of star formation in the galactic disk , 1980 .

[77]  C. Sneden,et al.  On the Use of [Na/Fe] and [α/Fe] Ratios and Hipparcos-based (U, V, W) Velocities as Age Indicators among Low-Metallicity Halo Field Giants , 1998 .

[78]  R. Zinn,et al.  Compositions of halo clusters and the formation of the galactic halo , 1978 .

[79]  T. Beers,et al.  Extremely Metal-Poor Stars. II. Elemental Abundances and the Early Chemical Enrichment of The Galaxy , 1996 .

[80]  Francisco Prada,et al.  Where Are the Missing Galactic Satellites? , 1999, astro-ph/9901240.

[81]  Galacti chemical evolution: Hygrogen through zinc , 1994, astro-ph/9411003.

[82]  B. Robertson,et al.  Disk Galaxy Formation in a Λ Cold Dark Matter Universe , 2004, astro-ph/0401252.

[83]  N. Grevesse,et al.  Standard Solar Composition , 1998 .

[84]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[85]  F. Hartwick The chemical evolution of the galactic halo , 1976 .

[86]  James S. Bullock,et al.  Halo Substructure and the Power Spectrum , 2003 .

[87]  Spergel,et al.  Observational evidence for self-interacting cold dark matter , 1999, Physical review letters.

[88]  B. Plez,et al.  Chemical Abundances in 12 Red Giants of the Large Magellanic Cloud from High-Resolution Infrared Spectroscopy , 2002, astro-ph/0208417.

[89]  Kathryn V. Johnston,et al.  Fossil Signatures of Ancient Accretion Events in the Halo , 1995 .

[90]  Stellar halo constraints on simulated late-type galaxies , 2003, astro-ph/0312023.

[91]  M. Rees,et al.  Supernovae: A survey of current research , 1982 .