Padé approximants and Adomian decomposition method for solving the Flierl-Petviashivili equation and its variants

Abstract In this paper, we present a reliable combination of Adomian decomposition algorithm and Pade approximants to investigate the Flierl–Petviashivili (FP) equation and its variants. The approach introduces an alternative framework designed to overcome the difficulty of the singular point at x = 0. We also investigate two generalized variants of the FP equation. The proposed framework reveals quite a number of remarkable features of the combination of the two algorithms.

[1]  Abdul-Majid Wazwaz,et al.  The modified decomposition method and Padé approximants for solving the Thomas-Fermi equation , 1999, Appl. Math. Comput..

[2]  G. Flierl,et al.  Isolated Eddy Models in Geophysics , 1987 .

[3]  Abdul-Majid Wazwaz,et al.  A new algorithm for calculating adomian polynomials for nonlinear operators , 2000, Appl. Math. Comput..

[4]  H. Davis Introduction to Nonlinear Differential and Integral Equations , 1964 .

[5]  N. Shawagfeh Nonperturbative approximate solution for Lane–Emden equation , 1993 .

[6]  Abdul-Majid Wazwaz,et al.  A new algorithm for solving differential equations of Lane-Emden type , 2001, Appl. Math. Comput..

[7]  Abdul-Majid Wazwaz,et al.  Analytical solution for the time-dependent Emden-Fowler type of equations by Adomian decomposition method , 2005, Appl. Math. Comput..

[8]  Abdul-Majid Wazwaz,et al.  A reliable modification of Adomian decomposition method , 1999, Appl. Math. Comput..

[9]  Glenn R. Flierl,et al.  Baroclinic solitary waves with radial symmetry , 1979 .

[10]  A. Wazwaz A First Course in Integral Equations , 1997 .

[11]  Abdul-Majid Wazwaz,et al.  Analytical approximations and Padé approximants for Volterra's population model , 1999, Appl. Math. Comput..

[12]  Abdul-Majid Wazwaz,et al.  A new method for solving singular initial value problems in the second-order ordinary differential equations , 2002, Appl. Math. Comput..

[13]  George Adomian,et al.  Solving Frontier Problems of Physics: The Decomposition Method , 1993 .

[14]  V. Petviashvili,et al.  Red spot of Jupiter and the drift soliton in a plasma , 1980 .

[15]  H. Poincaré,et al.  Les Méthodes nouvelles de la Mécanique céleste and An Introduction to the Study of Stellar Structure , 1958 .

[16]  John P. Boyd Monopolar and dipolar vortex solitons in two space dimensions , 1991 .

[17]  Abdul-Majid Wazwaz,et al.  Partial differential equations : methods and applications , 2002 .

[18]  J. Boyd Pade´ approximant algorithm for solving nonlinear ordinary differential equation boundary value problems on an unbounded domain , 1997 .