Risk theory in a Markovian environment
暂无分享,去创建一个
[1] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1951 .
[2] C. Segerdahl. When does ruin occur in the collective theory of risk , 1955 .
[3] R. Bellman. On a generalization of the fundamental identity of Wald , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.
[4] I. S. Volkov,et al. On the Distribution of Sums of Random Variables Defined on a Homogeneous Markov Chain with a Finite Number of States , 1958 .
[5] M. Tweedie. Generalizations of Wald's fundamental identity of sequential analysis to Markov chains , 1960 .
[6] J. Kingman. A convexity property of positive matrices , 1961 .
[7] H. D. Miller. A Generalization of Wald's Identity with Applications to Random Walks , 1961 .
[8] H. D. Miller. A Convexity Property in the Theory of Random Variables Defined on a Finite Markov Chain , 1961 .
[9] H. D. Miller. A Matrix Factorization Problem in the Theory of Random Variables Defined on a Finite Markov Chain , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.
[10] H. D. Miller. Absorption Probabilities for Sums of Random Variables Defined on a Finite Markov Chain , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.
[11] J. Keilson,et al. A central limit theorem for processes defined on a finite Markov chain , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.
[12] J. Keilson,et al. Boundary problems for additive processes defined on a finite Markov chain , 1965, Mathematical Proceedings of the Cambridge Philosophical Society.
[13] Julian Keilson,et al. Addenda to processes defined on a finite Markov chain , 1967, Mathematical Proceedings of the Cambridge Philosophical Society.
[14] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1967 .
[15] Boundary Problems for Sums of Lattice Random Variables, Defined on a Finite Regular Markov Chain , 1967 .
[16] È L Presman. FACTORIZATION METHODS AND BOUNDARY PROBLEMS FOR SUMS OF RANDOM VARIABLES GIVEN ON MARKOV CHAINS , 1969 .
[17] J. Kemeny,et al. Denumerable Markov chains , 1969 .
[18] Jac J. Janssen. Sur une généralisation du concept de promenade aléatoire sur la droite réelle , 1970 .
[19] Elja Arjas,et al. On the use of a fundamental identity in the theory of semi-Markov queues , 1972, Advances in Applied Probability.
[20] A classification of a random walk defined on a finite Markov chain , 1973 .
[21] Elja Arjas,et al. Topics in Markov Additive Processes. , 1973 .
[22] Elja Arjas,et al. Symmetric Wiener-Hopf factorisations in Markov additive processes , 1973 .
[23] The numerical calculation of U(w, t), the probability of non-ruin in an interval (0, t) , 1974 .
[24] Thomas Höglund,et al. Central limit theorems and statistical inference for finite Markov chains , 1974 .
[25] Jan Grandell,et al. A class of approximations of ruin probabilities , 1977 .
[26] Olof Thorin,et al. Calculation of Ruin Probabilities when the Claim Distribution is Lognormal , 1977, ASTIN Bulletin.
[27] Jan Grandell,et al. A remark on ‘A class of approximations of ruin probabilities’ , 1978 .
[28] D. Siegmund. Corrected diffusion approximations in certain random walk problems , 1979, Advances in Applied Probability.
[29] B. Davies,et al. Numerical Inversion of the Laplace Transform: A Survey and Comparison of Methods , 1979 .
[30] J. Keilson. Markov Chain Models--Rarity And Exponentiality , 1979 .
[31] Some Transient Results on the M/SM/1 Special Semi-Markov Model in Risk and Queueing Theories , 1980, ASTIN Bulletin.
[32] Marcel F. Neuts,et al. Matrix-Geometric Solutions in Stochastic Models , 1981 .
[34] K. Arndt,et al. Asymptotic Properties of the Distribution of the Supremum of a Random Walk on a Markov Chain , 1981 .
[35] J. Hunter. Generalized inverses and their application to applied probability problems , 1982 .
[36] Identités du type Baxter-Spitzer pour une classe de promenades aléatoires semi-markoviennes , 1982 .
[37] Amedeo R. Odoni,et al. An Empirical Investigation of the Transient Behavior of Stationary Queueing Systems , 1983, Oper. Res..
[38] Søren Asmussen,et al. Approximations for the probability of ruin within finite time , 1984 .
[39] J. Reinhard,et al. On a Class of Semi-Markov Risk Models Obtained as Classical Risk Models in a Markovian Environment , 1984, ASTIN Bulletin.
[40] Jac J. Janssen,et al. Probabilités de Ruine pour une Classe de Modèles de Risque Semi-Markoviens , 1985, ASTIN Bulletin.
[41] S. Asmussen. Conjugate processes and the silumation of ruin problems , 1985 .
[42] G. J. K. Regterschot,et al. The Queue M|G|1 with Markov Modulated Arrivals and Services , 1986, Math. Oper. Res..
[43] De Smit,et al. The single server semi-markov queue , 1986 .
[44] G. J. K. Regterschot,et al. A semi-Markov queue with exponential service times , 1986 .
[45] P. Ney,et al. MARKOV ADDITIVE PROCESSES II. LARGE DEVIATIONS , 1987 .
[46] S. Asmussen. The heavy traffic limit of a class of Markovian queueing models , 1987 .
[47] P. Ney,et al. Markov Additive Processes I. Eigenvalue Properties and Limit Theorems , 1987 .
[48] Tomas Björk,et al. Exponential inequalities for ruin probabilities in the Cox case , 1988 .
[49] Sلأren Asmussen,et al. Applied Probability and Queues , 1989 .
[50] Hermann Thorisson,et al. Large deviation results for time-dependent queue length distributions , 1988 .
[51] A. W. Kemp,et al. Applied Probability and Queues , 1989 .
[52] Søren Asmussen,et al. Ruin probabilities expressed in terms of storage processes , 1988, Advances in Applied Probability.