Risk theory in a Markovian environment

Abstract We consider risk processes t t⩾0 with the property that the rate β of the Poisson arrival process and the distribution of B of the claim sizes are not fixed in time but depend on the state of an underlying Markov jump process {Zt } t⩾0 such that β=β i and B=Bi when Zt=i . A variety of methods, including approximations, simulation and numerical methods, for assessing the values of the ruin probabilities are studied and in particular we look at the Cramer-Lundberg approximation and diffusion approximations with correction terms. The mathematical framework is Markov-modulated random walks in discrete and continuous time, and in particular Wiener-Hopf factorisation problems and conjugate distributions (Esscher transforms) are involved.

[1]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[2]  C. Segerdahl When does ruin occur in the collective theory of risk , 1955 .

[3]  R. Bellman On a generalization of the fundamental identity of Wald , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  I. S. Volkov,et al.  On the Distribution of Sums of Random Variables Defined on a Homogeneous Markov Chain with a Finite Number of States , 1958 .

[5]  M. Tweedie Generalizations of Wald's fundamental identity of sequential analysis to Markov chains , 1960 .

[6]  J. Kingman A convexity property of positive matrices , 1961 .

[7]  H. D. Miller A Generalization of Wald's Identity with Applications to Random Walks , 1961 .

[8]  H. D. Miller A Convexity Property in the Theory of Random Variables Defined on a Finite Markov Chain , 1961 .

[9]  H. D. Miller A Matrix Factorization Problem in the Theory of Random Variables Defined on a Finite Markov Chain , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  H. D. Miller Absorption Probabilities for Sums of Random Variables Defined on a Finite Markov Chain , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  J. Keilson,et al.  A central limit theorem for processes defined on a finite Markov chain , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  J. Keilson,et al.  Boundary problems for additive processes defined on a finite Markov chain , 1965, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  Julian Keilson,et al.  Addenda to processes defined on a finite Markov chain , 1967, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[15]  Boundary Problems for Sums of Lattice Random Variables, Defined on a Finite Regular Markov Chain , 1967 .

[16]  È L Presman FACTORIZATION METHODS AND BOUNDARY PROBLEMS FOR SUMS OF RANDOM VARIABLES GIVEN ON MARKOV CHAINS , 1969 .

[17]  J. Kemeny,et al.  Denumerable Markov chains , 1969 .

[18]  Jac J. Janssen Sur une généralisation du concept de promenade aléatoire sur la droite réelle , 1970 .

[19]  Elja Arjas,et al.  On the use of a fundamental identity in the theory of semi-Markov queues , 1972, Advances in Applied Probability.

[20]  A classification of a random walk defined on a finite Markov chain , 1973 .

[21]  Elja Arjas,et al.  Topics in Markov Additive Processes. , 1973 .

[22]  Elja Arjas,et al.  Symmetric Wiener-Hopf factorisations in Markov additive processes , 1973 .

[23]  The numerical calculation of U(w, t), the probability of non-ruin in an interval (0, t) , 1974 .

[24]  Thomas Höglund,et al.  Central limit theorems and statistical inference for finite Markov chains , 1974 .

[25]  Jan Grandell,et al.  A class of approximations of ruin probabilities , 1977 .

[26]  Olof Thorin,et al.  Calculation of Ruin Probabilities when the Claim Distribution is Lognormal , 1977, ASTIN Bulletin.

[27]  Jan Grandell,et al.  A remark on ‘A class of approximations of ruin probabilities’ , 1978 .

[28]  D. Siegmund Corrected diffusion approximations in certain random walk problems , 1979, Advances in Applied Probability.

[29]  B. Davies,et al.  Numerical Inversion of the Laplace Transform: A Survey and Comparison of Methods , 1979 .

[30]  J. Keilson Markov Chain Models--Rarity And Exponentiality , 1979 .

[31]  Some Transient Results on the M/SM/1 Special Semi-Markov Model in Risk and Queueing Theories , 1980, ASTIN Bulletin.

[32]  Marcel F. Neuts,et al.  Matrix-Geometric Solutions in Stochastic Models , 1981 .

[33]  Stability Theorems and Estimates of the Rate of Convergence of the Components of Factorizations for Walks Defined on Markov Chains , 1981 .

[34]  K. Arndt,et al.  Asymptotic Properties of the Distribution of the Supremum of a Random Walk on a Markov Chain , 1981 .

[35]  J. Hunter Generalized inverses and their application to applied probability problems , 1982 .

[36]  Identités du type Baxter-Spitzer pour une classe de promenades aléatoires semi-markoviennes , 1982 .

[37]  Amedeo R. Odoni,et al.  An Empirical Investigation of the Transient Behavior of Stationary Queueing Systems , 1983, Oper. Res..

[38]  Søren Asmussen,et al.  Approximations for the probability of ruin within finite time , 1984 .

[39]  J. Reinhard,et al.  On a Class of Semi-Markov Risk Models Obtained as Classical Risk Models in a Markovian Environment , 1984, ASTIN Bulletin.

[40]  Jac J. Janssen,et al.  Probabilités de Ruine pour une Classe de Modèles de Risque Semi-Markoviens , 1985, ASTIN Bulletin.

[41]  S. Asmussen Conjugate processes and the silumation of ruin problems , 1985 .

[42]  G. J. K. Regterschot,et al.  The Queue M|G|1 with Markov Modulated Arrivals and Services , 1986, Math. Oper. Res..

[43]  De Smit,et al.  The single server semi-markov queue , 1986 .

[44]  G. J. K. Regterschot,et al.  A semi-Markov queue with exponential service times , 1986 .

[45]  P. Ney,et al.  MARKOV ADDITIVE PROCESSES II. LARGE DEVIATIONS , 1987 .

[46]  S. Asmussen The heavy traffic limit of a class of Markovian queueing models , 1987 .

[47]  P. Ney,et al.  Markov Additive Processes I. Eigenvalue Properties and Limit Theorems , 1987 .

[48]  Tomas Björk,et al.  Exponential inequalities for ruin probabilities in the Cox case , 1988 .

[49]  Sلأren Asmussen,et al.  Applied Probability and Queues , 1989 .

[50]  Hermann Thorisson,et al.  Large deviation results for time-dependent queue length distributions , 1988 .

[51]  A. W. Kemp,et al.  Applied Probability and Queues , 1989 .

[52]  Søren Asmussen,et al.  Ruin probabilities expressed in terms of storage processes , 1988, Advances in Applied Probability.