The interaction of carbon and hydrogen in a α-Fe divacancy

[1]  M. E. Pronsato,et al.  Density functional study of H?Fe vacancy interaction in bcc iron , 2004 .

[2]  R. Mclellan,et al.  The thermodynamic and kinetic behavior of metal–vacancy–hydrogen systems , 2004 .

[3]  J. Foct,et al.  Ab initio study of foreign interstitial atom (C, N) interactions with intrinsic point defects in α-Fe , 2004 .

[4]  M. E. Pronsato,et al.  The electronic effect of carbon and hydrogen in an () edge dislocation core system in bcc iron , 2003 .

[5]  T. Ohno,et al.  Stability and clusterization of hydrogen-vacancy complexes in α-Fe: An ab initio study , 2003 .

[6]  A. Mavridis,et al.  Theoretical investigation of iron carbide, FeC , 2002 .

[7]  D. Farkas,et al.  Interatomic potentials for carbon interstitials in metals and intermetallics , 2002 .

[8]  C. Domain,et al.  Ab initio calculations of defects in Fe and dilute Fe-Cu alloys , 2001 .

[9]  E. van der Giessen,et al.  Micromechanics of high temperature hydrogen attack , 2001 .

[10]  S. Gesari,et al.  A comparative study of the electronic structure of H pairs near a/2[1 1̄ 1] and a[0 1 0] dislocations in bcc Fe , 2001 .

[11]  V. Giessen,et al.  Evolution of the methane pressure in a standard 2.25Cr-1Mo steel during hydrogen attack , 2001 .

[12]  S. Gesari,et al.  Hydrogen on the Fe (1̄12) surface and hydrogen pairs near bcc mixed (a/2)[11̄1] dislocation: electronic structure , 2000 .

[13]  S. M. Toy Stress-induced hydrogen movement and the partial molal volume of hydrogen in AISI 4340 steel , 1999 .

[14]  A. Juan,et al.  A theory of hydrogen trapping in a faulted zone of FCC iron , 1998 .

[15]  H. Hagi Thermal Evolution Spectrum of Hydrogen from Low Carbon Steel Charged by Cathodic Polarization , 1997 .

[16]  D. Ellis,et al.  Electronic bonding characteristics of hydrogen in bcc iron: Part I. Interstitials , 1996 .

[17]  V. Giessen,et al.  Investigation of hydrogen attack in 2.25Cr-1Mo steels with a high-triaxiality void growth model , 1996 .

[18]  E. Haller,et al.  Hydrogen interactions with defects in crystalline solids , 1992 .

[19]  A. Anderson The influence of electrochemical potential on chemistry at electrode surfaces modeled by MO theory , 1990 .

[20]  Ramaswamy Viswanathan,et al.  Damage Mechanisms and Life Assessment of High Temperature Components , 1989 .

[21]  Griessen Heats of solution and lattice-expansion and trapping energies of hydrogen in transition metals. , 1988, Physical review. B, Condensed matter.

[22]  A. Vehanen,et al.  Vacancy-Carbon Interaction in Iron , 1980 .

[23]  H. Grabke Adsorption, segregation and reactions of non-metal atoms on iron surfaces , 1980 .

[24]  B. Carnahan,et al.  HYDROGEN ADSORPTION AT DISLOCATIONS AND CRACKS IN Fe , 1978 .

[25]  R. Hoffmann,et al.  The band structure of the tetracyanoplatinate chain , 1978 .

[26]  A. Anderson Interaction of hydrogen, carbon, ethylene, acetylene, and alkyl fragments with iron surfaces. Catalytic hydrogenation, dehydrogenation, carbon bond breakage, and hydrogen mobility , 1977 .

[27]  A. Anderson Derivation of the extended Hückel method with corrections: One electron molecular orbital theory for energy level and structure determinations , 1975 .

[28]  Roald Hoffmann,et al.  Description of diatomic molecules using one electron configuration energies with two‐body interactions , 1974 .

[29]  R. Hoffmann An Extended Hückel Theory. I. Hydrocarbons , 1963 .

[30]  W. Lipscomb,et al.  Theory of Polyhedral Molecules. I. Physical Factorizations of the Secular Equation , 1962 .