Titchmarsh theorems, Hausdorff-Young-Paley inequality and $L^p$-$L^q$ boundedness of Fourier multipliers on harmonic $NA$ groups

In this paper we extend classical Titchmarsh theorems on the Fourier transform of HölderLipschitz functions to the setting of harmonic NA groups, which relate smoothness properties of functions to the growth and integrability of their Fourier transform. We prove a Fourier multiplier theorem for L-Hölder-Lipschitz spaces on Harmonic NA groups. We also derive conditions and a characterisation of Dini-Lipschitz classes on Harmonic NA groups in terms of the behaviour of their Fourier transform. Then, we shift our attention to the spherical analysis on Harmonic NA group. Since the spherical analysis on these groups fits well in the setting of Jacobi analysis we prefer to work in the Jacobi setting. We prove L-L boundedness of Fourier multipliers by extending a classical theorem of Hörmander to the Jacobi analysis setting. On the way to accomplish this classical result we prove Paley-type inequality and Hausdorff-Young-Paley inequality. We also establish L-L boundedness of spectral multipliers of the Jacobi Laplacian.

[1]  T. Koornwinder Jacobi Functions and Analysis on Noncompact Semisimple Lie Groups , 1984 .

[2]  Non-integrable multipliers for the Jacobi transform , 2013 .

[3]  E. Damek,et al.  Harmonic analysis on solvable extensions of H-type groups , 1992 .

[4]  Michael Ruzhansky,et al.  Hardy-Littlewood, Hausdorff-Young-Paley inequalities, and L-L Fourier multipliers on compact homogeneous manifolds , 2015, Journal of Mathematical Analysis and Applications.

[5]  Sina Degenfeld-Schonburg On the Hausdorff–Young theorem for commutative hypergroups , 2013 .

[6]  Michael Ruzhansky,et al.  Titchmarsh theorems for Fourier transforms of Hölder–Lipschitz functions on compact homogeneous manifolds , 2017, Monatshefte für Mathematik.

[7]  L. Hörmander,et al.  Estimates for translation invariant operators inLp spaces , 1960 .

[8]  M. Cowling,et al.  $L^p - L^q$ estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces. I , 1993 .

[9]  E. Damek,et al.  Spherical analysis on harmonic $A N$ groups , 1996 .

[10]  R. Akylzhanov,et al.  Hardy-Littlewood-Paley inequalities and Fourier multipliers on SU ( 2 ) , 2018 .

[11]  The Helgason-Fourier transform for symmetric spaces. II , 2003 .

[12]  E. Damek The geometry of a semi-direct extension of a Heisenberg type nilpotent group , 1987 .

[13]  F. Astengo Multipliers for a distinguished Laplacean on solvable extensions ofH-type groups , 1995 .

[14]  Rudra P. Sarkar,et al.  FOURIER AND RADON TRANSFORM ON HARMONIC NA GROUPS , 2009 .

[15]  J. E. Littlewood,et al.  Theorems on Fourier Series and Power Series , 1931 .

[16]  W. Bloom,et al.  Fourier Multipliers for Lp on Chébli–Trimèche Hypergroups , 2000 .

[17]  J. E. Littlewood,et al.  Theorems on Fourier Series and Power Series (II) , 1937 .

[18]  M. Younis FOURIER TRANSFORMS OF LIPSCHITZ FUNCTIONS ON CERTAIN LIE GROUPS , 2001 .

[19]  T. Koornwinder,et al.  The convolution structure for Jacobi function expansions , 1973 .

[20]  Michael Cowling,et al.  H-type groups and Iwasawa decompositions☆ , 1991 .

[21]  E. C. Titchmarsh Introduction to the theory of fourier integrals / by E.C. Titchmarsh , 1986 .

[22]  Michael Ruzhansky,et al.  $L^p$-$L^q$ boundedness of pseudo-differential operators on smooth manifolds and its applications to nonlinear equations. , 2020, 2005.04936.

[23]  A. J. Castro,et al.  Spectral Multipliers for Multidimensional Bessel Operators , 2011 .

[24]  Jean-Philippe Anker Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces , 1992 .

[25]  Michael Ruzhansky,et al.  $L^p$-$L^q$ multipliers on locally compact groups , 2015, 1510.06321.

[26]  M. Pinsky,et al.  Growth properties of Fourier transforms via moduli of continuity , 2008 .

[27]  Lp-Spectral Multipliers for the Hodge Laplacian Acting on 1-Forms on the Heisenberg Group , 2005, math/0508543.

[28]  F. Astengo,et al.  The Helgason Fourier transform on a class of nonsymmetric harmonic spaces , 1997, Bulletin of the Australian Mathematical Society.

[29]  Rudra P. Sarkar,et al.  The role of restriction theorems in harmonic analysis on harmonic NA groups , 2010 .

[30]  Aroldo Kaplan,et al.  Fundamental solutions for a class of hypoelliptic PDE , 1980 .

[31]  M. Younis FOURIER TRANSFORMS OF DINI-LIPSCHITZ FUNCTIONS , 1986 .

[32]  W. Bray Growth and Integrability of Fourier Transforms on Euclidean Space , 2013, 1308.2268.

[33]  B. D. Blasio Paley-Wiener type theorems on harmonic extensions ofH-type groups , 1997 .

[34]  T. Koornwinder,et al.  Jacobi functions: The addition formula and the positivity of the dual convolution structure , 1979 .

[35]  Michael Ruzhansky,et al.  Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} Fourier multipliers on compact Lie groups , 2015, Mathematische Zeitschrift.

[36]  S. Fahlaoui,et al.  Fourier Transforms of Dini–Lipschitz Functions on Rank 1 Symmetric Spaces , 2016 .

[37]  F. Astengo A class of L p convolutors on harmonic extensions of H-type groups , 1995 .

[38]  Jean-Philippe Anker ${\bf L}_p$ Fourier multipliers on Riemannian symmetric spaces of the noncompact type , 1990 .

[39]  M. Chatzakou,et al.  $L^p-L^q$ boundedness of Fourier multipliers associated with the anharmonic Oscillator , 2020, 2004.07801.

[40]  M. Cowling,et al.  Oscillatory Multipliers Related to the Wave Equation on Noncompact Symmetric Spaces , 2002 .

[41]  M. Vallarino Analysis on harmonic extensions of H-type groups , 2015, 1504.00329.

[42]  Michael Ruzhansky,et al.  Fourier multipliers, symbols, and nuclearity on compact manifolds , 2014, Journal d'Analyse Mathématique.

[43]  M. Younis,et al.  FOURIER TRANSFORMS OF DINI-LIPSCHITZ FUNCTIONS ON VlLENKIN GROUPS , 1992 .