Vision under mesopic and scotopic illumination

Evidence has accumulated that rod activation under mesopic and scotopic light levels alters visual perception and performance. Here we review the most recent developments in the measurement of rod and cone contributions to mesopic color perception and temporal processing, with a focus on data measured using a four-primary photostimulator method that independently controls rod and cone excitations. We discuss the findings in the context of rod inputs to the three primary retinogeniculate pathways to understand rod contributions to mesopic vision. Additionally, we present evidence that hue perception is possible under scotopic, pure rod-mediated conditions that involves cortical mechanisms.

[1]  W. Middleton,et al.  The appearance of colors in twilight. , 1952, Journal of the Optical Society of America.

[2]  Morven A. Cameron,et al.  Influence of the rod photoresponse on light adaptation and circadian rhythmicity in the cone ERG , 2009, Molecular vision.

[3]  B. Stabell,et al.  Wavelength discrimination of peripheral cones and its change with rod intrusion , 1977, Vision Research.

[4]  B. Stabell,et al.  The effect of rod acitvity on colour matching functions , 1975, Vision Research.

[5]  Hao Sun,et al.  Control of the modulation of human photoreceptors , 2001 .

[6]  W. R. Brown,et al.  The influence of luminance level on visual sensitivity to color differences. , 1951, Journal of the Optical Society of America.

[7]  Sarah L. Elliott,et al.  Scotopic hue percepts in natural scenes. , 2012, Journal of Vision.

[8]  John J. McCann,et al.  Red/white projections and rod/long-wave cone color: an annotated bibliography , 2004, J. Electronic Imaging.

[9]  L. C. Thomson,et al.  The variations of hue discrimination with change of luminance level , 1951, The Journal of physiology.

[10]  S. Buck The Interaction of Rod and Cone Signals: Pathways and Psychophysics Rod-cone Interaction Mesopic Vision Color Vision Rod Hue Biases Chromatic Discrimination Spatial Sensitivity Temporal Sensitivity Retinal Processing Cortical Processing , 2022 .

[11]  S. Hattar,et al.  Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation , 2008, Proceedings of the National Academy of Sciences.

[12]  Andrew J. Zele,et al.  Macular function in tilted disc syndrome , 2010, Documenta Ophthalmologica.

[13]  B. B. Lee,et al.  Temporal response of ganglion cells of the macaque retina to cone-specific modulation. , 1995, Journal of the Optical Society of America. A, Optics, image science, and vision.

[14]  B. H. Crawford The dependence of pupil size upon external light stimulus under static and variable conditions , 1936 .

[15]  D. A. Palmer,et al.  A System of Mesopic Photometry , 1966, Nature.

[16]  B. Drum Summation of rod and cone responses at absolute threshold , 1982, Vision Research.

[17]  Michael A. Pitts,et al.  Chromatic perceptive field sizes change with retinal illuminance. , 2005, Journal of vision.

[18]  T. Ishida Color identification data obtained from photopic to mesopic illuminance levels , 2002 .

[19]  R. Hess,et al.  Spatial and temporal properties of human rod vision in the achromat. , 1986, The Journal of physiology.

[20]  K Knoblauch,et al.  Relating cone signals to color appearance: Failure of monotonicity in yellow/blue , 2001, Visual Neuroscience.

[21]  J. L. Schnapf,et al.  Photovoltage of rods and cones in the macaque retina. , 1995, Science.

[22]  Tandra Ghose,et al.  Generalization between canonical and non-canonical views in object recognition. , 2013, Journal of vision.

[23]  Joel Pokorny,et al.  Photostimulator allowing independent control of rods and the three cone types , 2004, Visual Neuroscience.

[24]  S. Hecht,et al.  THE VISIBILITY OF SINGLE LINES AT VARIOUS ILLUMINATIONS AND THE RETINAL BASIS OF VISUAL RESOLUTION , 1939, The Journal of general physiology.

[25]  Victor A. F. Lamme,et al.  Masking interrupts figure-ground signals in V1 , 2010 .

[26]  H. Barlow Temporal and spatial summation in human vision at different background intensities , 1958, The Journal of physiology.

[27]  D. Dacey Parallel pathways for spectral coding in primate retina. , 2000, Annual review of neuroscience.

[28]  A. Shapiro Cone-specific mediation of rod sensitivity in trichromatic observers. , 2002, Investigative ophthalmology & visual science.

[29]  H. Spekreijse,et al.  The “silent substitution” method in visual research , 1982, Vision Research.

[30]  Leo Maurice Hurvich,et al.  Color vision , 1981 .

[31]  Bjørn Stabell,et al.  Effects of rod activity on color threshold , 1976, Vision Research.

[32]  Joel Pokorny,et al.  Spatial and temporal chromatic contrast: Effects on chromatic discrimination for stimuli varying in L- and M-cone excitation , 2006, Visual Neuroscience.

[33]  Andrew J. Zele,et al.  Dark-adapted rod suppression of cone flicker detection: Evaluation of receptoral and postreceptoral interactions , 2006, Visual Neuroscience.

[34]  K. D. Zylan,et al.  Article , 1996, Physiology & Behavior.

[35]  Barry B. Lee,et al.  Mesopic spectral responses and the purkinje shift of macaque lateral geniculate nucleus cells , 1987, Vision Research.

[36]  B. Stabell,et al.  Scotopic contrast hues triggered by rod activity , 1975, Vision Research.

[37]  D. Hood,et al.  Interactions between rod and cone channels above threshold: A test of various models , 1982, Vision Research.

[38]  P. Sieving,et al.  Summation of Rod and S Cone Signals at Threshold in Human Observers , 1996, Vision Research.

[39]  R. M. Boynton,et al.  Rod influence in dichromatic surface color perception , 1987, Vision Research.

[40]  V. Volbrecht,et al.  Chromatic perceptive field sizes measured at 10° eccentricity along the horizontal and vertical meridians , 2009 .

[41]  A. Stockman,et al.  Two signals in the human rod visual system: A model based on electrophysiological data , 1995, Visual Neuroscience.

[42]  Andrew J. Zele,et al.  Assessing rod, cone, and melanopsin contributions to human pupil flicker responses. , 2014, Investigative ophthalmology & visual science.

[43]  G. Fishman,et al.  Rod-cone interaction in flicker perimetry. , 1984, The British journal of ophthalmology.

[44]  J. Kremers,et al.  Rod and S-cone driven ERG signals at high retinal illuminances , 2009, Documenta Ophthalmologica.

[45]  A. Linksz Outlines of a Theory of the Light Sense. , 1965 .

[46]  J. Pokorny,et al.  Spectral sensitivity of color-blind observers and the cone photopigments. , 1972, Vision research.

[47]  Joel Pokorny,et al.  Matching rod percepts with cone stimuli , 2004, Vision Research.

[48]  J. Pokorny,et al.  Isolated mesopic rod and cone electroretinograms realized with a four-primary method , 2011, Documenta Ophthalmologica.

[49]  J. Pokorny,et al.  Rod-cone interactions assessed in inferred magnocellular and parvocellular postreceptoral pathways. , 2001, Journal of vision.

[50]  S. Buck,et al.  Generality of rod hue biases with smaller, brighter, and photopically specified stimuli , 2004, Visual Neuroscience.

[51]  G. Arden,et al.  Rod-cone interactions and analysis of retinal disease. , 1985, The British journal of ophthalmology.

[52]  Heinz Wässle,et al.  The rod pathway of the macaque monkey retina: Identification of AII‐amacrine cells with antibodies against calretinin , 1995, The Journal of comparative neurology.

[53]  Frank Müller,et al.  Modulation of rod photoreceptor output by HCN1 channels is essential for regular mesopic cone vision. , 2011, Nature communications.

[54]  Jonathon Shlens,et al.  High sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina , 2009, Nature Neuroscience.

[55]  D. Macleod,et al.  Spatial and temporal properties of light adaptation in the rod system , 2000, Vision Research.

[56]  D. G. Green,et al.  Optical and retinal factors affecting visual resolution. , 1965, The Journal of physiology.

[57]  A. Bethe,et al.  Handbuch der Normalen und Pathologischen Physiologie , 1925 .

[58]  A. Nagy,et al.  Red-green color discrimination as a function of stimulus field size in peripheral vision. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[59]  Nao Ninomiya,et al.  The 10th anniversary of journal of visualization , 2007, J. Vis..

[60]  D. H. Kelly Visual response to time-dependent stimuli. I. Amplitude sensitivity measurements. , 1961, Journal of the Optical Society of America.

[61]  S. Buck What is the hue of rod vision , 2001 .

[62]  B. B. Lee,et al.  Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation. , 1983, Journal of neurophysiology.

[63]  T. Frumkes,et al.  The cellular basis for suppressive rod–cone interaction , 1988, Visual Neuroscience.

[64]  Dingcai Cao,et al.  Contributions of rhodopsin, cone opsins, and melanopsin to postreceptoral pathways inferred from natural image statistics. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[65]  G VERRIEST,et al.  Further studies on acquired deficiency of color discrimination. , 1963, Journal of the Optical Society of America.

[66]  G. Fishman,et al.  Mechanisms of rod-cone interaction: Evidence from congenital stationary nightblindness , 1988, Vision Research.

[67]  Andrew J. Zele,et al.  Melanopsin-Expressing Intrinsically Photosensitive Retinal Ganglion Cells in Retinal Disease , 2014, Optometry and vision science : official publication of the American Academy of Optometry.

[68]  CHROMATIC ROD VISION , 1971 .

[69]  G. Fowler,et al.  Rod influence on hue-scaling functions , 1998, Vision Research.

[70]  Kenneth Knoblauch,et al.  Dual bases in dichromatic color space , 1995 .

[71]  Rod hue biases produced on CRT displays. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[72]  A. Stockman,et al.  The field adaptation of the human rod visual system. , 1992, The Journal of physiology.

[73]  S. Buck,et al.  Time course of rod influences on hue perception , 2008, Visual Neuroscience.

[74]  V. Volbrecht,et al.  Middle- and long-wavelength discrimination declines with rod photopigment regeneration. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[75]  B. Stabell,et al.  Chromatic rod vision. II. Wavelength of pre-stimulation varied. , 1971, Scandinavian journal of psychology.

[76]  G. Arden,et al.  Nyctalopia with normal rod function: A suppression of cones by rods , 1991, Eye.

[77]  Darren E. Koenig,et al.  The absolute threshold of cone vision. , 2011, Journal of vision.

[78]  J. Barbur,et al.  Changes in reaction time and search time with background luminance in the mesopic range , 2006, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[79]  C. M. Davenport,et al.  Parallel ON and OFF Cone Bipolar Inputs Establish Spatially Coextensive Receptive Field Structure of Blue-Yellow Ganglion Cells in Primate Retina , 2009, The Journal of Neuroscience.

[80]  J. McCann,et al.  Interaction of the long-wave cones and the rods to produce color sensations. , 1969, Journal of the Optical Society of America.

[81]  S. Buck,et al.  Do rod signals add with S cone signals in increment detection , 1997 .

[82]  H. Spekreijse,et al.  Interaction between rod and cone signals studied with temporal sine wave stimulation. , 1977, Journal of the Optical Society of America.

[83]  Dingcai Cao,et al.  Lateral suppression of mesopic rod and cone flicker detection. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[84]  Jyrki Rovamo,et al.  Perimetry of critical flicker frequency in human rod and cone vision , 1986, Vision Research.

[85]  V C Smith,et al.  Cone-rod receptor spaces with illustrations that use CRT phosphor and light-emitting-diode spectra. , 1996, Journal of the Optical Society of America. A, Optics, image science, and vision.

[86]  Do rods influence the hue of foveal stimuli? , 2004, Visual Neuroscience.

[87]  James Clerk Maxwell,et al.  On the theory of compound colours, and the relations of the colours of the spectrum , 1860, Proceedings of the Royal Society of London.

[88]  Lindsay T. Sharpe,et al.  Rod pathways: the importance of seeing nothing , 1999, Trends in Neurosciences.

[89]  M. Ikeda,et al.  Mesopic luminous-efficiency functions. , 1981, Journal of the Optical Society of America.

[90]  Andrew J. Zele,et al.  Mesopic rod and S-cone interactions revealed by modulation thresholds. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[91]  Axel Petzold,et al.  Clinical disorders affecting mesopic vision , 2006, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[92]  J D Conner,et al.  The temporal properties of rod vision. , 1982, The Journal of physiology.

[93]  Barry B. Lee,et al.  Spatial distributions of cone inputs to cells of the parvocellular pathway investigated with cone-isolating gratings. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[94]  Jay Neitz,et al.  Colour Vision: The Wonder of Hue , 2008, Current Biology.

[95]  V. Volbrecht,et al.  Effect of the S-cone mosaic and rods on red/green equilibria. , 1998, Journal of the Optical Society of America. A, Optics, image science, and vision.

[96]  Anthony J. Adams,et al.  Rod-cone interaction in flicker detection , 1984, Vision Research.

[97]  R. Shapley,et al.  Background light and the contrast gain of primate P and M retinal ganglion cells. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[98]  V C Smith,et al.  Large-field trichromacy in protanopes and deuteranopes. , 1977, Journal of the Optical Society of America.

[99]  Joel Pokorny,et al.  Rod contributions to color perception: Linear with rod contrast , 2007, Vision Research.

[100]  K. Tansley,et al.  The Relation of the Critical Frequency of Flicker to the Adaptation of the Eye , 1929 .

[101]  H. D. L. Dzn,et al.  Experiments on flicker and some calculations on an electrical analogue of the foveal systems , 1952 .

[102]  D. H. Kelly,et al.  Visual responses to time-dependent stimuli. IV. Effects of chromatic adaptation. , 1962, Journal of the Optical Society of America.

[103]  Andrew J. Zele,et al.  The color of night: Surface color perception under dim illuminations , 2006, Visual Neuroscience.

[104]  D. Macleod,et al.  Rod photoreceptors detect rapid flicker. , 1977, Science.

[105]  S. Buck,et al.  Time-dependent changes of rod influence on hue perception , 2002, Vision Research.

[106]  J. Pokorny,et al.  Temporal dynamics of early light adaptation. , 2003, Journal of vision.

[107]  R. L. Valois,et al.  A multi-stage color model , 1993, Vision Research.

[108]  Donald I. A. MacLeod,et al.  Rod flicker perception: Scotopic duality, phase lags and destructive interference , 1989, Vision Research.

[109]  Andrew J. Zele,et al.  Effect of rod-cone interactions on mesopic visual performance mediated by chromatic and luminance pathways. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[110]  F. Rieke,et al.  Light adaptation in cone vision involves switching between receptor and post-receptor sites , 2007, Nature.

[111]  Vicki J. Volbrecht,et al.  The Influence of Rods on Colour Naming During Dark Adaptation , 2003 .

[112]  J. Barbur,et al.  The perception of moving comets at high retinal illuminance levels: A rod-cone interaction effect , 1986, Biological Cybernetics.

[113]  Leon Lagnado,et al.  The retina , 1999, Current Biology.

[114]  Michael A. Pitts,et al.  Effect of stimulus intensity on the sizes of chromatic perceptive fields. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[115]  S. Buck,et al.  Dark versus bright equilibrium hues: rod and cone biases. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[116]  Max Johann Sigismund Schultze,et al.  Zur Anatomie und Physiologie der Retina , 1866 .

[117]  R. Lythgoe,et al.  DARK-ADAPTATION AND THE PERIPHERAL COLOUR SENSATIONS OF NORMAL SUBJECTS , 1931, The British journal of ophthalmology.

[118]  Rod and cone contributions to change in hue with eccentricity , 1979, Vision Research.

[119]  Joel Pokorny,et al.  Rod inputs to macaque ganglion cells , 1997, Vision Research.

[120]  J. L. Barbur,et al.  Characterising mesopic spectral sensitivity from reaction times , 2006, Vision Research.

[121]  S. Shioiri,et al.  Change of Color Appearance in Photopic, Mesopic and Scotopic Vision , 2004 .

[122]  Barry B. Lee,et al.  Combination of rod and cone inputs in parasol ganglion cells of the magnocellular pathway. , 2010, Journal of vision.

[123]  P Gouras,et al.  Rod and cone interaction in dark‐adapted monkey ganglion cells , 1966, The Journal of physiology.

[124]  Andrew J. Zele,et al.  Rod and cone pathway signaling and interaction under mesopic illumination. , 2013, Journal of vision.

[125]  Joel Pokorny,et al.  Rod contribution to large‐field color matching , 1994 .

[126]  Cone-rod interaction over time and space , 1985, Vision Research.

[127]  Dingcai Cao,et al.  Persons with age-related maculopathy risk genotypes and clinically normal eyes have reduced mesopic vision. , 2010, Investigative ophthalmology & visual science.

[128]  John D. Bullough,et al.  Evaluating light source efficacy under mesopic conditions using reaction times , 1997 .

[129]  D. Jameson,et al.  An opponent-process theory of color vision. , 1957, Psychological review.

[130]  D. Macleod,et al.  Mesopic luminance assessed with minimum motion photometry. , 2011, Journal of vision.

[131]  R. W. Rodieck Which Cells Code for Color , 1991 .

[132]  J. L. Schnapf,et al.  Gap-Junctional Coupling and Absolute Sensitivity of Photoreceptors in Macaque Retina , 2005, The Journal of Neuroscience.

[133]  D. Macleod,et al.  Rods Cancel Cones in Flicker , 1972, Nature.

[134]  M. Ikeda,et al.  Rod-cone interrelation. , 1969, Journal of the Optical Society of America.

[135]  P. Lennie,et al.  Functional Asymmetries in Visual Pathways Carrying S-Cone Signals in Macaque , 2008, The Journal of Neuroscience.

[136]  J. A. Harlow,et al.  Measurements of chromatic sensitivity in the mesopic range , 2001 .

[137]  R. M. Boynton,et al.  Large-field color naming of dichromats with rods bleached. , 1979, Journal of the Optical Society of America.

[138]  J. Pokorny,et al.  Critical Flicker Frequency in X-Chromosome Linked Dichromats , 1989 .

[139]  Barry B. Lee,et al.  Horizontal Cells of the Primate Retina: Cone Specificity Without Spectral Opponency , 1996, Science.

[140]  B. Ambler Hue discrimination in peripheral vision under conditions of dark and light adaptation , 1974 .

[141]  Roger Knight,et al.  Rods affect S-cone discrimination on the Farnsworth–Munsell 100-hue test , 1998, Vision Research.

[142]  J. Pokorny,et al.  The color of night: surface color categorization by color defective observers under dim illuminations. , 2008, Visual neuroscience.

[143]  A. Stockman,et al.  Slow and fast pathways in the human rod visual system: electrophysiology and psychophysics. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[144]  R. M. Boynton,et al.  Residual red-green discrimination in dichromats. , 1968, Journal of the Optical Society of America.

[145]  S. Buck,et al.  Partial additivity of rod signals with M- and L-Cone signals in increment detection , 1994, Vision Research.

[146]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[147]  S. Buck,et al.  Rod hue biases for foveal stimuli on CRT displays. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[148]  V. C. Smith,et al.  How much light reaches the retina , 1997 .

[149]  Joel Pokorny,et al.  S-cone discrimination for stimuli with spatial and temporal chromatic contrast , 2008, Visual Neuroscience.

[150]  C. Ribelayga,et al.  The Circadian Clock in the Retina Controls Rod-Cone Coupling , 2008, Neuron.

[151]  Joel Pokorny,et al.  Rod and cone contrast gains derived from reaction time distribution modeling. , 2010, Journal of vision.

[152]  G Wald,et al.  HUMAN VISION AND THE SPECTRUM. , 1945, Science.

[153]  U. Grünert Anatomical Evidence for Rod Input to the Parvocellular Pathway in the Visual System of the Primate , 1997, The European journal of neuroscience.

[154]  R. Nygaard,et al.  Inhibitory influence of unstimulated rods in the human retina: evidence provided by examining cone flicker. , 1983, Science.

[155]  Jaj Jacques Roufs,et al.  Light as a true visual quantity : principles of measurement , 1978 .

[156]  P. Trezona,et al.  Rod participation in the 'blue' mechanism and its effect on colour matching. , 1970, Vision research.

[157]  Joel Pokorny,et al.  Rod–cone interactions and the temporal impulse response of the cone pathway , 2008, Vision Research.

[158]  John L. Barbur,et al.  Photopic, Mesopic, and Scotopic Vision and Changes in Visual Performance , 2010 .

[159]  M. Gilbert Colour Perception in Parafoveal Vision , 1950 .

[160]  C. H. Jones On Inhibitory Influence , 1859 .

[161]  John L Barbur,et al.  Effective contrast of colored stimuli in the mesopic range: a metric for perceived contrast based on achromatic luminance contrast. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[162]  John J. McCann,et al.  Color vision from rod and long-wave cone interactions: Conditions in which rods contribute to multicolored images , 1977, Vision Research.

[163]  S. Hecht,et al.  Dark Adaptation Following Light Adaptation to Red and White Lights*1 , 1945 .

[164]  V. Volbrecht,et al.  Unique hue judgments as a function of test size in the fovea and at 20-deg temporal eccentricity. , 1995, Journal of the Optical Society of America. A, Optics, image science, and vision.

[165]  W. Stiles,et al.  Saturation of the Rod Mechanism of the Retina at High Levels of Stimulation , 1954 .

[166]  J. Verweij,et al.  Sensitivity and dynamics of rod signals in H1 horizontal cells of the macaque monkey retina. , 1999, Vision Research.

[167]  J. Pokorny,et al.  Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm , 1975, Vision Research.

[168]  Paul R. Martin,et al.  Retinal connectivity and primate vision , 2010, Progress in Retinal and Eye Research.

[169]  Changes in induced hues at low luminance and following dark adaptation suggest rod-cone interactions may differ for luminance increments and decrements , 2008, Visual Neuroscience.

[170]  Nancy I Fan-Paul,et al.  Night vision disturbances after corneal refractive surgery. , 2002, Survey of ophthalmology.

[171]  W. D. Wright Physiological Optics , 1958, Nature.

[172]  D. Stefurak,et al.  The time-course of rod-cone interaction , 1984, Vision Research.

[173]  Ralph J. Jensen,et al.  Rod pathways in mammalian retinae , 1990, Trends in Neurosciences.

[174]  J. Kremers,et al.  Rod–cone-interactions in deuteranopic observers: models and dynamics , 1999, Vision Research.

[175]  J. Pokorny,et al.  Chromatic Contrast Discrimination: Data and Prediction for Stimuli Varying in L and M Cone Excitation , 2000 .

[176]  Andrew J. Zele,et al.  Defining the detection mechanisms for symmetric and rectified flicker stimuli , 2007, Vision Research.

[177]  Stimulus size affects rod influence on tritan chromatic discrimination , 2001 .

[178]  Andrew J. Zele,et al.  Chromatic discrimination in the presence of incremental and decremental rod pedestals , 2008, Visual Neuroscience.

[179]  J. Barbur REACTION‐TIME DETERMINATION OF THE LATENCY BETWEEN VISUAL SIGNALS GENERATED BY RODS AND CONES , 1982, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[180]  S. Hecht,et al.  ENERGY, QUANTA, AND VISION , 1942, The Journal of general physiology.

[181]  Andrew J. Zele,et al.  Threshold units: A correct metric for reaction time? , 2007, Vision Research.

[182]  J. McCann,et al.  Rod-Cone Interactions: Different Color Sensations from Identical Stimuli , 1972, Science.

[183]  A. Stockman,et al.  Into the twilight zone: the complexities of mesopic vision and luminous efficiency , 2006, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[184]  B. Stabell,et al.  Mechanisms of chromatic rod vision in scotopic illumination , 1994, Vision Research.

[185]  A J Vingrys,et al.  Color recognition and discrimination under full-moon light. , 1994, Applied optics.

[186]  I. Lie Dark adaptation and the photochromatic interval , 2004, Documenta Ophthalmologica.

[187]  Joel Pokorny,et al.  Linking impulse response functions to reaction time: Rod and cone reaction time data and a computational model , 2007, Vision Research.

[188]  D. A. Palmer,et al.  The scotopic visibility curve and cone intrusion , 1985, Vision Research.

[189]  Andrew J Anderson,et al.  Multiple processes mediate flicker sensitivity , 2001, Vision Research.

[190]  V C Smith,et al.  Brightness induction from rods. , 2001, Journal of vision.

[191]  J. Mollon Color vision. , 1982, Annual review of psychology.

[192]  T. Frumkes,et al.  Suppressive rod-cone interactions: evidence for separate retinal (temporal) and extraretinal (spatial) mechanisms in achromatic vision. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[193]  Donald C. Hood,et al.  Sensitivity to Light , 1986 .

[195]  J. Moreland,et al.  Colour Perception with the Peripheral Retina , 1959 .