Stability analysis and controller synthesis for hybrid dynamical systems

Wherever continuous and discrete dynamics interact, hybrid systems arise. This is especially the case in many technological systems in which logic decision-making and embedded control actions are combined with continuous physical processes. Also for many mechanical, biological, electrical and economical systems the use of hybrid models is essential to adequately describe their behaviour. To capture the evolution of these systems, mathematical models are needed that combine in one way or another the dynamics of the continuous parts of the system with the dynamics of the logic and discrete parts. These mathematical models come in all kinds of variations, but basically consist of some form of differential or difference equations on the one hand and automata or other discrete-event models on the other hand. The collection of analysis and synthesis techniques based on these models forms the research area of hybrid systems theory, which plays an important role in the multi-disciplinary design of many technological systems that surround us. This paper presents an overview from the perspective of the control community on modelling, analysis and control design for hybrid dynamical systems and surveys the major research lines in this appealing and lively research area.

[1]  Daniel Liberzon,et al.  Lie-Algebraic Stability Criteria for Switched Systems , 2001, SIAM J. Control. Optim..

[2]  Francesco Borrelli,et al.  Constrained Optimal Control of Linear and Hybrid Systems , 2003, IEEE Transactions on Automatic Control.

[3]  Angelo Alessandri,et al.  Design of Luenberger Observers for a Class of Hybrid Linear Systems , 2001, HSCC.

[4]  Bart De Schutter,et al.  On hybrid systems and closed-loop MPC systems , 2002, IEEE Trans. Autom. Control..

[5]  V. Borkar,et al.  A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..

[6]  A. J. van der Schaft,et al.  Complementarity modeling of hybrid systems , 1998, IEEE Trans. Autom. Control..

[7]  Paulo Tabuada,et al.  Verification and Control of Hybrid Systems , 2009 .

[8]  Jan Lunze,et al.  Handbook of hybrid systems control : theory, tools, applications , 2009 .

[9]  W. P. M. H. Heemels,et al.  Predictive control of hybrid systems: Input-to-state stability results for sub-optimal solutions , 2009, Autom..

[10]  Paulo Tabuada,et al.  Verification and Control of Hybrid Systems - A Symbolic Approach , 2009 .

[11]  Alberto Bemporad,et al.  Stabilizing Model Predictive Control of Hybrid Systems , 2006, IEEE Transactions on Automatic Control.

[12]  Anders Rantzer,et al.  Convex dynamic programming for hybrid systems , 2002, IEEE Trans. Autom. Control..

[13]  A. Morse,et al.  Stability of switched systems with average dwell-time , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[14]  W. P. M. H. Heemels,et al.  Comparison of Four Procedures for the Identification of Hybrid Systems , 2005, HSCC.

[15]  H. Sussmann,et al.  A maximum principle for hybrid optimal control problems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[16]  S. Pettersson Switched State Jump Observers for Switched Systems , 2005 .

[17]  Nathan van de Wouw,et al.  Tracking and synchronisation for a class of PWA systems , 2008, Autom..

[18]  H. Witsenhausen A class of hybrid-state continuous-time dynamic systems , 1966 .

[19]  Clyde F. Martin,et al.  A Converse Lyapunov Theorem for a Class of Dynamical Systems which Undergo Switching , 1999, IEEE Transactions on Automatic Control.

[20]  Frank Allgöwer,et al.  State and Output Feedback Nonlinear Model Predictive Control: An Overview , 2003, Eur. J. Control.

[21]  Thomas A. Henzinger,et al.  Hybrid Systems: Computation and Control , 1998, Lecture Notes in Computer Science.

[22]  Alberto Bemporad,et al.  Observability and controllability of piecewise affine and hybrid systems , 2000, IEEE Trans. Autom. Control..

[23]  S. Sastry,et al.  An algebraic geometric approach to the identification of a class of linear hybrid systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[24]  Bart De Schutter,et al.  Equivalence of hybrid dynamical models , 2001, Autom..

[25]  Thomas A. Henzinger,et al.  Modularity for Timed and Hybrid Systems , 1997, CONCUR.

[26]  Alberto Bemporad,et al.  A bounded-error approach to piecewise affine system identification , 2005, IEEE Transactions on Automatic Control.

[27]  Bart De Schutter,et al.  MPC for continuous piecewise-affine systems , 2004, Syst. Control. Lett..

[28]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[29]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[30]  A. Juloski,et al.  Observer design for a class of piecewise linear systems , 2007 .

[31]  Victor Solo,et al.  On the stability of slowly time-varying linear systems , 1994, Math. Control. Signals Syst..

[32]  W. P. M. H. Heemels,et al.  Lyapunov Functions, Stability and Input-to-State Stability Subtleties for Discrete-Time Discontinuous Systems , 2009, IEEE Transactions on Automatic Control.

[33]  J. Cortés Discontinuous dynamical systems , 2008, IEEE Control Systems.

[34]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[35]  Panos J. Antsaklis,et al.  Optimal control of switched systems based on parameterization of the switching instants , 2004, IEEE Transactions on Automatic Control.

[36]  J. Daafouz,et al.  Parameter-dependent state observer design for affine LPV systems , 2001 .

[37]  A. Morse,et al.  Basic problems in stability and design of switched systems , 1999 .

[38]  Joseph Sifakis,et al.  On the Synthesis of Discrete Controllers for Timed Systems (An Extended Abstract) , 1995, STACS.

[39]  Manfred Morari,et al.  Moving horizon estimation for hybrid systems , 2002, IEEE Trans. Autom. Control..

[40]  Eduardo D. Sontag,et al.  Interconnected Automata and Linear Systems: A Theoretical Framework in Discrete-Time , 1996, Hybrid Systems.

[41]  Jan Willem Polderman,et al.  Stability Analysis for Hybrid Automata Using Conservative Gains , 2003, ADHS.

[42]  John N. Tsitsiklis,et al.  Complexity of stability and controllability of elementary hybrid systems , 1999, Autom..

[43]  Manfred Morari,et al.  A clustering technique for the identification of piecewise affine systems , 2001, Autom..

[44]  K. Narendra,et al.  A common Lyapunov function for stable LTI systems with commuting A-matrices , 1994, IEEE Trans. Autom. Control..

[45]  M. Johansson,et al.  Piecewise Linear Control Systems , 2003 .

[46]  Yasuaki Kuroe,et al.  A solution to the common Lyapunov function problem for continuous-time systems , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[47]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[48]  Robert Shorten,et al.  Stability Criteria for Switched and Hybrid Systems , 2007, SIAM Rev..

[49]  J. H. Schuppen,et al.  A controllability result for piecewise-linear hybrid systems , 2001, 2001 European Control Conference (ECC).

[50]  B. Brogliato Nonsmooth Impact Mechanics: Models, Dynamics and Control , 1996 .

[51]  R. Sanfelice,et al.  Hybrid dynamical systems , 2009, IEEE Control Systems.

[52]  Frank L. Lewis,et al.  Control engineering series , 1998 .

[53]  Y. Pyatnitskiy,et al.  Criteria of asymptotic stability of differential and difference inclusions encountered in control theory , 1989 .

[54]  Hai Lin,et al.  Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results , 2009, IEEE Transactions on Automatic Control.

[55]  A. Nerode,et al.  Hybrid Control Systems: An Introductory Discussion to the Special Issue , 1998, IEEE Trans. Autom. Control..

[56]  Antonis Papachristodoulou,et al.  Robust Stability Analysis of Nonlinear Hybrid Systems , 2009, IEEE Transactions on Automatic Control.

[57]  S. Yau Mathematics and its applications , 2002 .

[58]  Jamal Daafouz,et al.  Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach , 2002, IEEE Trans. Autom. Control..

[59]  Eduardo Sontag Nonlinear regulation: The piecewise linear approach , 1981 .

[60]  Sven Leyffer,et al.  Numerical Experience with Lower Bounds for MIQP Branch-And-Bound , 1998, SIAM J. Optim..

[61]  M. Kanat Camlibel,et al.  Algebraic Necessary and Sufficient Conditions for the Controllability of Conewise Linear Systems , 2008, IEEE Transactions on Automatic Control.

[62]  John Lygeros,et al.  Verified hybrid controllers for automated vehicles , 1998, IEEE Trans. Autom. Control..

[63]  Christos G. Cassandras,et al.  Optimal control of a class of hybrid systems , 2001, IEEE Trans. Autom. Control..

[64]  M. Kanat Camlibel,et al.  Conewise Linear Systems: Non-Zenoness and Observability , 2006, SIAM J. Control. Optim..

[65]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[66]  Kyun K. Lee,et al.  On the controllability of piecewise-linear hypersurface systems , 1987, 1987 American Control Conference.

[67]  Alberto L. Sangiovanni-Vincentelli,et al.  Design of Observers for Hybrid Systems , 2002, HSCC.

[68]  Nancy A. Lynch,et al.  Hybrid I/O automata , 1995, Inf. Comput..

[69]  A. Morse,et al.  Stability of switched systems: a Lie-algebraic condition ( , 1999 .

[70]  Alberto Bemporad,et al.  Model predictive control based on linear programming - the explicit solution , 2002, IEEE Transactions on Automatic Control.

[71]  Jun Liu,et al.  Uniform stability of switched nonlinear systems , 2009 .

[72]  Alberto Bemporad,et al.  Control of systems integrating logic, dynamics, and constraints , 1999, Autom..

[73]  R. Decarlo,et al.  Perspectives and results on the stability and stabilizability of hybrid systems , 2000, Proceedings of the IEEE.

[74]  Anders Rantzer,et al.  Computation of piecewise quadratic Lyapunov functions for hybrid systems , 1997, 1997 European Control Conference (ECC).

[75]  Wassim M. Haddad,et al.  Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control , 2006 .

[76]  Wpmh Maurice Heemels,et al.  On the existence and uniqueness of solution trajectories to hybrid dynamical systems , 2002 .

[77]  J. Hespanha,et al.  Hybrid systems: Generalized solutions and robust stability , 2004 .

[78]  W. P. M. H. Heemels,et al.  Input-to-state stability and interconnections of discontinuous dynamical systems , 2008, Autom..

[79]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[80]  J. M. Schumacher Call for papers Automatica special issue on hybrid systems , 1997, Autom..

[81]  Johannes Schumacher,et al.  An Introduction to Hybrid Dynamical Systems, Springer Lecture Notes in Control and Information Sciences 251 , 1999 .

[82]  Alberto Bemporad,et al.  Identification of piecewise affine systems via mixed-integer programming , 2004, Autom..

[83]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[84]  A. Juloski,et al.  A Bayesian approach to identification of hybrid systems , 2004, CDC.

[85]  Arjan van der Schaft,et al.  The complementary-slackness class of hybrid systems , 1996, Math. Control. Signals Syst..

[86]  J. L. Mancilla-Aguilar,et al.  A converse Lyapunov theorem for nonlinear switched systems , 2000 .

[87]  Manfred Morari,et al.  Analysis of discrete-time piecewise affine and hybrid systems , 2002, Autom..

[88]  Jan H. van Schuppen,et al.  Observability of Piecewise-Affine Hybrid Systems , 2004, HSCC.

[89]  Magnus Egerstedt,et al.  Observability of Switched Linear Systems , 2004, HSCC.

[90]  Raymond A. DeCarlo,et al.  Switched Controller Synthesis for the Quadratic Stabilisation of a Pair of Unstable Linear Systems , 1998, Eur. J. Control.

[91]  Mauro Garavello,et al.  Hybrid Necessary Principle , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[92]  Rafal Goebel,et al.  Solutions to hybrid inclusions via set and graphical convergence with stability theory applications , 2006, Autom..

[93]  W. P. M. H. Heemels,et al.  A Bayesian approach to identification of hybrid systems , 2004, IEEE Transactions on Automatic Control.

[94]  M. Branicky Multiple Lyapunov functions and other analysis tools for switched and hybrid systems , 1998, IEEE Trans. Autom. Control..

[95]  Christos G. Cassandras,et al.  Introduction to Discrete Event Systems , 1999, The Kluwer International Series on Discrete Event Dynamic Systems.

[96]  L. Grüne,et al.  Nonlinear Model Predictive Control : Theory and Algorithms. 2nd Edition , 2011 .

[97]  Bart De Schutter,et al.  Optimal Control of a Class of Linear Hybrid Systems with Saturation , 1999, SIAM J. Control. Optim..

[98]  Jan H. van Schuppen,et al.  Reachability and control synthesis for piecewise-affine hybrid systems on simplices , 2006, IEEE Transactions on Automatic Control.

[99]  Anders Rantzer,et al.  Piecewise linear quadratic optimal control , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[100]  Calin Belta,et al.  A Fully Automated Framework for Control of Linear Systems from Temporal Logic Specifications , 2008, IEEE Transactions on Automatic Control.