Stable Marriage with Covering Constraints-A Complete Computational Trichotomy

We consider Stable Marriage with Covering Constraints (SMC): in this variant of Stable Marriage, we distinguish a subset of women as well as a subset of men, and we seek a matching with fewest number of blocking pairs that matches all of the distinguished people. We investigate how a set of natural parameters, namely the maximum length of preference lists for men and women, the number of distinguished men and women, and the number of blocking pairs allowed determine the computational tractability of this problem.

[1]  Makoto Yokoo,et al.  Strategyproof matching with regional minimum and maximum quotas , 2016, Artif. Intell..

[2]  David Manlove,et al.  Efficient algorithms for generalized Stable Marriage and Roommates problems , 2007, Theor. Comput. Sci..

[3]  Peter Troyan,et al.  Improving Matching under Hard Distributional Constraints , 2015 .

[4]  Celina M. H. de Figueiredo,et al.  The stable marriage problem with restricted pairs , 2003, Theor. Comput. Sci..

[5]  Shuichi Miyazaki,et al.  The Hospitals/Residents Problem with Lower Quotas , 2014, Algorithmica.

[6]  Robert W. Irving,et al.  Stable matching with couples: An empirical study , 2011, JEAL.

[7]  David Manlove,et al.  Many-to-one Matchings with Lower Quotas: Algorithms and Complexity , 2014, ISAAC.

[8]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[9]  Tamás Fleiner,et al.  A Matroid Approach to Stable Matchings with Lower Quotas , 2012, Math. Oper. Res..

[10]  Yu Yokoi Envy-free Matchings with Lower Quotas , 2017, ISAAC.

[11]  Nicole Immorlica,et al.  Marriage, honesty, and stability , 2005, SODA '05.

[12]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[13]  David Manlove,et al.  Stable Marriage with Ties and Bounded Length Preference Lists , 2006, ACiD.

[14]  David Manlove,et al.  Algorithmics of Matching Under Preferences , 2013, Bull. EATCS.

[15]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[16]  Michael R. Fellows,et al.  On the parameterized complexity of multiple-interval graph problems , 2009, Theor. Comput. Sci..

[17]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[18]  Michael A. Trick,et al.  How hard is it to control an election? Math , 1992 .

[19]  Eric McDermid,et al.  "Almost stable" matchings in the Roommates problem with bounded preference lists , 2012, Theor. Comput. Sci..

[20]  Leo Võhandu,et al.  Stable marriage problem and college admission , 2005 .

[21]  A. Roth,et al.  The Redesign of the Matching Market for American Physicians: Some Engineering Aspects of Economic Design , 1999, The American economic review.

[22]  Chien-Chung Huang,et al.  Classified stable matching , 2009, SODA '10.

[23]  Donald E. Knuth Mariages stables et leurs relations avec d'autres problèmes combinatoires : introduction à l'analyse mathématique des algorithmes , 1976 .

[24]  Makoto Yokoo,et al.  Strategyproof Matching with Minimum Quotas , 2016, TEAC.

[25]  David Manlove,et al.  Matchings with Lower Quotas: Algorithms and Complexity , 2014, Algorithmica.

[26]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[27]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[28]  Katarína Cechlárová,et al.  Pareto optimal matchings with lower quotas , 2017, Math. Soc. Sci..

[29]  Harry R. Lewis,et al.  Review of "Mariages stables et leur relations avec d'autre problèmes combinatoires: introduction à l'analyze mathématique des algorithmes" by Donald E. Knuth. Les Presses de l'Université de Montréal. , 1978, SIGA.

[30]  Scott Duke Kominers,et al.  Matching with Slot-Specific Priorities: Theory , 2016 .

[31]  David Manlove,et al.  Stable Marriage and Roommates problems with restricted edges: Complexity and approximability , 2016, Discret. Optim..

[32]  David Gale,et al.  Some remarks on the stable matching problem , 1985, Discret. Appl. Math..

[33]  David Manlove,et al.  The College Admissions problem with lower and common quotas , 2010, Theor. Comput. Sci..

[34]  L. S. Shapley,et al.  College Admissions and the Stability of Marriage , 2013, Am. Math. Mon..

[35]  Naoyuki Kamiyama A note on the serial dictatorship with project closures , 2013, Oper. Res. Lett..

[36]  Dániel Marx,et al.  Stable assignment with couples: Parameterized complexity and local search , 2009, Discret. Optim..

[37]  Haris Aziz,et al.  On the Susceptibility of the Deferred Acceptance Algorithm , 2015, AAMAS.

[38]  Alexander Westkamp An analysis of the German university admissions system , 2013 .

[39]  Ge Xia,et al.  Linear FPT reductions and computational lower bounds , 2004, STOC '04.

[40]  Yu Yokoi,et al.  A Generalized Polymatroid Approach to Stable Matchings with Lower Quotas , 2017, Math. Oper. Res..

[41]  Toby Walsh,et al.  Control of Fair Division , 2016, IJCAI.

[42]  Peter Troyan,et al.  Improving matching under hard distributional constraints: Improving matching under constraints , 2017 .

[43]  Vincent Conitzer,et al.  Handbook of Computational Social Choice , 2016 .

[44]  Muhammed A. Yıldırım,et al.  School Choice with Controlled Choice Constraints: Hard Bounds Versus Soft Bounds , 2012 .

[45]  Parag A. Pathak,et al.  Matching with Couples: Stability and Incentives in Large Markets , 2010 .

[46]  Robert W. Irving,et al.  The Stable marriage problem - structure and algorithms , 1989, Foundations of computing series.

[47]  Dániel Marx,et al.  Parameterized Complexity and Local Search Approaches for the Stable Marriage Problem with Ties , 2009, Algorithmica.

[48]  Daniel Monte,et al.  Matching with quorums , 2013 .

[49]  David Manlove,et al.  Stable Marriage and Roommates Problems with Restricted Edges: Complexity and Approximability , 2014, SAGT.

[50]  G. Brightwell THE STABLE MARRIAGE PROBLEM: STRUCTURE AND ALGORITHMS (Foundations of Computing) , 1991 .