A Novel Synthesis Route for Cu/ZnO/Al2O3 Catalysts used in Methanol Synthesis: Combining Continuous Consecutive Precipitation with Continuous Aging of the Precipitate

A novel continuous method for the preparation of a ternary Cu/ZnO/Al2O3 catalyst based on a cascade of micromixers and a tubular aging reactor is presented as a promising alternative route to the conventional batch process. Its application, in combination with immediate spray drying, enables monitoring of the formation of the final precursor by exchange reactions between initially separated phases during the aging step. These exchange reactions were successfully simulated by consecutive precipitation by using micromixers in series as analytical tool. After 60 min of continuous aging, calcination, and reduction, a catalyst is produced that exhibits an almost equal mass‐related activity in methanol synthesis compared to a commercial catalyst and an area‐related activity that is about 50 % higher.

[1]  K. C. Waugh,et al.  The activity and state of the copper surface in methanol synthesis catalysts , 1986 .

[2]  K. C. Waugh,et al.  The measurement of copper surface areas by reactive frontal chromatography , 1987 .

[3]  F. Thévenot,et al.  Preparation and Characterization of Al-Rich Zn-Al Hydrotalcite-Like Compounds , 1989 .

[4]  A. Mersmann,et al.  Feststoffbildung durch Kristallisation und Fällung , 1990 .

[5]  J. M. Rojo,et al.  Thermal decomposition of hydrotalcites. An infrared and nuclear magnetic resonance spectroscopic study , 1992 .

[6]  J. Nvlt Precipitation of Catalyst Precursors Theoretical Fundamentals , 1995 .

[7]  A. Tsunashima,et al.  Mg-Zn-Al-CO3 and Zn-Cu-Al-CO3 hydrotalcite-like compounds: Preparation and characterization , 1995 .

[8]  C. Perego,et al.  Catalyst preparation methods , 1997 .

[9]  U. Costantino,et al.  New Synthetic Routes to Hydrotalcite-Like Compounds − Characterisation and Properties of the Obtained Materials , 1998 .

[10]  J. Fierro,et al.  Spectroscopic Evidence of Cu–Al Interactions in Cu–Zn–Al Mixed Oxide Catalysts Used in CO Hydrogenation☆ , 1998 .

[11]  M. Lindén,et al.  In Situ X-Ray Diffraction Study of the Initial Stages of Formation of MCM-41 in a Tubular Reactor. , 1998, Angewandte Chemie.

[12]  IN-SITU-XRD-UNTERSUCHUNG DER FRUHEN STADIEN VON MCM-41-SYNTHESEN IN EINEM ROHRREAKTOR , 1998 .

[13]  Kenzi Suzuki,et al.  Selective production of hydrogen by partial oxidation of methanol over catalysts derived from CuZnAl‐layered double hydroxides , 1999 .

[14]  M. Lindén,et al.  Phase Behavior and Wall Formation in Zr(SO4)2/CTABr and TiOSO4/CTABr Mesophases , 1999 .

[15]  K. Waugh,et al.  Comments on “The effect of ZnO in methanol synthesis catalysts on Cu dispersion and the specific activity” [by T. Fujitani and J. Nakamura] , 1999 .

[16]  M. Muhler,et al.  Chemisorption of N2O and H2 for the Surface Determination of Copper Catalysts , 2000 .

[17]  J. Rieger,et al.  Organische Nanopartikel in wässriger Phase – Theorie, Experiment und Anwendung , 2001 .

[18]  F. J. Waller,et al.  Methanol technology developments for the new millennium , 2001 .

[19]  R. Schlögl,et al.  Implication of the microstructure of binary Cu/ZnO catalysts for their catalytic activity in methanol synthesis , 2001 .

[20]  M. Lindén,et al.  Techniques for analyzing the early stages of crystallization reactions , 2001 .

[21]  J. Rieger,et al.  Organic Nanoparticles in the Aqueous Phase-Theory, Experiment, and Use. , 2001, Angewandte Chemie.

[22]  R. Schlögl,et al.  Relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates. , 2003, Chemistry.

[23]  R. Schlögl,et al.  Kontinuierliche Ko-Fällung von Katalysatoren in einem Mikromischer: Nanostrukturierte Cu/ZnO Komposite für die Methanolsynthese , 2003 .

[24]  M. Muhler,et al.  Methanol synthesis over ZnO: A structure-sensitive reaction? , 2003 .

[25]  R. Schlögl,et al.  Continuous coprecipitation of catalysts in a micromixer: nanostructured Cu/ZnO composite for the synthesis of methanol. , 2003, Angewandte Chemie.

[26]  M. Muhler,et al.  New Synthetic Routes to More Active Cu/ZnO Catalysts Used for Methanol Synthesis , 2004 .

[27]  B. Meyer,et al.  Aktive Zentren an Oxidoberflächen: Die ZnO-katalysierte Methanolsynthese aus CO und H2† , 2005 .

[28]  B. Meyer,et al.  Active sites on oxide surfaces: ZnO-catalyzed synthesis of methanol from CO and H2. , 2005, Angewandte Chemie.

[29]  Danijel Babic,et al.  Precipitation of barium sulfate: Experimental investigation about the influence of supersaturation and free lattice ion ratio on particle formation , 2006 .

[30]  M. Muhler,et al.  The influence of strongly reducing conditions on strong metal-support interactions in Cu/ZnO catalysts used for methanol synthesis. , 2006, Physical chemistry chemical physics : PCCP.

[31]  Robert Schlögl,et al.  Role of lattice strain and defects in copper particles on the activity of Cu/ZnO/Al(2)O(3) catalysts for methanol synthesis. , 2007, Angewandte Chemie.

[32]  M. Kind,et al.  Experimentelle Untersuchungen zur Partikelbildung bei der Fällung von Barium‐ und Strontiumsulfat , 2007 .

[33]  M. Muhler,et al.  High Surface Area ZnO Nanoparticles via a Novel Continuous Precipitation Route , 2008 .

[34]  F. Schüth,et al.  Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis , 2008 .

[35]  M. Muhler,et al.  On the Role of Aging, Washing, and Drying in the Synthesis of Polycrystalline Zinc Oxide by Precipitation: Combining Fast Continuous Mixing, Spray Drying and Freeze Drying to Unravel the Solid-State Transformations of the Precipitate , 2009 .

[36]  Krijn P. de Jong,et al.  Synthesis of Solid Catalysts , 2009 .

[37]  M. Muhler,et al.  On the precipitation mechanism and the role of the post-precipitation steps during the synthesis of binary ZnO–Al2O3 composites with high specific surface area , 2009 .

[38]  M. Muhler,et al.  Chapter 15. Methanol Catalysts , 2009 .

[39]  M. Behrens,et al.  Structural Effects of Cu/Zn Substitution in the Malachite–Rosasite System , 2010 .

[40]  S. Kühl,et al.  Phase-pure Cu,Zn,Al Hydrotalcite-like Materials as Precursors for Copper rich Cu/ZnO/Al2O3 Catalysts , 2010 .