A Novel Synthesis Route for Cu/ZnO/Al2O3 Catalysts used in Methanol Synthesis: Combining Continuous Consecutive Precipitation with Continuous Aging of the Precipitate
暂无分享,去创建一个
Robert Schlögl | Malte Behrens | Martin Muhler | R. Schlögl | M. Muhler | S. Kaluza | M. Behrens | B. Kniep | R. Fischer | Benjamin Kniep | Stefan Kaluza | Nora Schiefenhövel | Richard W. Fischer | Nora Schiefenhövel
[1] K. C. Waugh,et al. The activity and state of the copper surface in methanol synthesis catalysts , 1986 .
[2] K. C. Waugh,et al. The measurement of copper surface areas by reactive frontal chromatography , 1987 .
[3] F. Thévenot,et al. Preparation and Characterization of Al-Rich Zn-Al Hydrotalcite-Like Compounds , 1989 .
[4] A. Mersmann,et al. Feststoffbildung durch Kristallisation und Fällung , 1990 .
[5] J. M. Rojo,et al. Thermal decomposition of hydrotalcites. An infrared and nuclear magnetic resonance spectroscopic study , 1992 .
[6] J. Nvlt. Precipitation of Catalyst Precursors Theoretical Fundamentals , 1995 .
[7] A. Tsunashima,et al. Mg-Zn-Al-CO3 and Zn-Cu-Al-CO3 hydrotalcite-like compounds: Preparation and characterization , 1995 .
[8] C. Perego,et al. Catalyst preparation methods , 1997 .
[9] U. Costantino,et al. New Synthetic Routes to Hydrotalcite-Like Compounds − Characterisation and Properties of the Obtained Materials , 1998 .
[10] J. Fierro,et al. Spectroscopic Evidence of Cu–Al Interactions in Cu–Zn–Al Mixed Oxide Catalysts Used in CO Hydrogenation☆ , 1998 .
[11] M. Lindén,et al. In Situ X-Ray Diffraction Study of the Initial Stages of Formation of MCM-41 in a Tubular Reactor. , 1998, Angewandte Chemie.
[12] IN-SITU-XRD-UNTERSUCHUNG DER FRUHEN STADIEN VON MCM-41-SYNTHESEN IN EINEM ROHRREAKTOR , 1998 .
[13] Kenzi Suzuki,et al. Selective production of hydrogen by partial oxidation of methanol over catalysts derived from CuZnAl‐layered double hydroxides , 1999 .
[14] M. Lindén,et al. Phase Behavior and Wall Formation in Zr(SO4)2/CTABr and TiOSO4/CTABr Mesophases , 1999 .
[15] K. Waugh,et al. Comments on “The effect of ZnO in methanol synthesis catalysts on Cu dispersion and the specific activity” [by T. Fujitani and J. Nakamura] , 1999 .
[16] M. Muhler,et al. Chemisorption of N2O and H2 for the Surface Determination of Copper Catalysts , 2000 .
[17] J. Rieger,et al. Organische Nanopartikel in wässriger Phase – Theorie, Experiment und Anwendung , 2001 .
[18] F. J. Waller,et al. Methanol technology developments for the new millennium , 2001 .
[19] R. Schlögl,et al. Implication of the microstructure of binary Cu/ZnO catalysts for their catalytic activity in methanol synthesis , 2001 .
[20] M. Lindén,et al. Techniques for analyzing the early stages of crystallization reactions , 2001 .
[21] J. Rieger,et al. Organic Nanoparticles in the Aqueous Phase-Theory, Experiment, and Use. , 2001, Angewandte Chemie.
[22] R. Schlögl,et al. Relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates. , 2003, Chemistry.
[23] R. Schlögl,et al. Kontinuierliche Ko-Fällung von Katalysatoren in einem Mikromischer: Nanostrukturierte Cu/ZnO Komposite für die Methanolsynthese , 2003 .
[24] M. Muhler,et al. Methanol synthesis over ZnO: A structure-sensitive reaction? , 2003 .
[25] R. Schlögl,et al. Continuous coprecipitation of catalysts in a micromixer: nanostructured Cu/ZnO composite for the synthesis of methanol. , 2003, Angewandte Chemie.
[26] M. Muhler,et al. New Synthetic Routes to More Active Cu/ZnO Catalysts Used for Methanol Synthesis , 2004 .
[27] B. Meyer,et al. Aktive Zentren an Oxidoberflächen: Die ZnO-katalysierte Methanolsynthese aus CO und H2† , 2005 .
[28] B. Meyer,et al. Active sites on oxide surfaces: ZnO-catalyzed synthesis of methanol from CO and H2. , 2005, Angewandte Chemie.
[29] Danijel Babic,et al. Precipitation of barium sulfate: Experimental investigation about the influence of supersaturation and free lattice ion ratio on particle formation , 2006 .
[30] M. Muhler,et al. The influence of strongly reducing conditions on strong metal-support interactions in Cu/ZnO catalysts used for methanol synthesis. , 2006, Physical chemistry chemical physics : PCCP.
[31] Robert Schlögl,et al. Role of lattice strain and defects in copper particles on the activity of Cu/ZnO/Al(2)O(3) catalysts for methanol synthesis. , 2007, Angewandte Chemie.
[32] M. Kind,et al. Experimentelle Untersuchungen zur Partikelbildung bei der Fällung von Barium‐ und Strontiumsulfat , 2007 .
[33] M. Muhler,et al. High Surface Area ZnO Nanoparticles via a Novel Continuous Precipitation Route , 2008 .
[34] F. Schüth,et al. Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis , 2008 .
[35] M. Muhler,et al. On the Role of Aging, Washing, and Drying in the Synthesis of Polycrystalline Zinc Oxide by Precipitation: Combining Fast Continuous Mixing, Spray Drying and Freeze Drying to Unravel the Solid-State Transformations of the Precipitate , 2009 .
[36] Krijn P. de Jong,et al. Synthesis of Solid Catalysts , 2009 .
[37] M. Muhler,et al. On the precipitation mechanism and the role of the post-precipitation steps during the synthesis of binary ZnO–Al2O3 composites with high specific surface area , 2009 .
[38] M. Muhler,et al. Chapter 15. Methanol Catalysts , 2009 .
[39] M. Behrens,et al. Structural Effects of Cu/Zn Substitution in the Malachite–Rosasite System , 2010 .
[40] S. Kühl,et al. Phase-pure Cu,Zn,Al Hydrotalcite-like Materials as Precursors for Copper rich Cu/ZnO/Al2O3 Catalysts , 2010 .