The Existence of Doubly Resolvable (v, 3, 2) - BIBDs

Abstract A Kirkman square with index λ, latinicity μ, block size κ, and ν points, a KSκ(ν; μ, λ), is a t × t array ( t = λ(ν − 1) μ(κ − 1) ) defined on a ν-set V such that (1) every point of V is contained in precisely μ cells of each row and column, (2) each cell of the array is either empty or contains a κ-subset of V, and (3) the collection of blocks obtained from the non-empty cells of the array is a (ν, κ, λ)-BIBD. For μ = 1, the existence of a KSκ(ν; μ, λ) is equivalent to the existence of a doubly resolvable (ν, κ, λ)-BIBD. The spectrum of KS2(ν; 1, 1) or Room squares was completed by Mullin and Wallis in 1975. In this paper, we determine the spectrum of KS3(ν; 1, 2) or DR(ν, 3, 2)-BIBDs with at present six possible exceptions for ν.

[1]  Haim Hanani,et al.  Balanced incomplete block designs and related designs , 1975, Discret. Math..

[2]  D. Jungnickel Latin squares, their geometries and their groups. A survey , 1990 .

[3]  Scott A. Vanstone,et al.  The existence of partitioned balanced tournament designs of side 4n + 3 , 1987 .

[4]  Esther R. Lamken,et al.  3-complementary frames and doubly near resolvable (v, 3, 2)- BIBDs , 1991, Discret. Math..

[5]  E. R. Lamken,et al.  The existence of doubly near resolvable (v,3,2)-BIBDs , 1994 .

[6]  R. Julian R. Abel,et al.  Four mutually orthogonal Latin squares of orders 28 and 52 , 1991, J. Comb. Theory, Ser. A.

[7]  Lie Zhu,et al.  On the existence of three MOLS with equal-sized holes , 1991, Australas. J Comb..

[8]  W. D. Wallis,et al.  On the existence of room squares , 1972 .

[9]  Rudolf Mathon,et al.  Construction methods for Bhaskar Rao and related designs , 1987 .

[10]  Douglas R Stinson,et al.  Contemporary design theory : a collection of surveys , 1992 .

[11]  Douglas R. Stinson,et al.  A Kirkman square of order 51 and block size 3 , 1985, Discret. Math..

[12]  Ronald D. Baker,et al.  Resolvable bibd and sols , 1983, Discret. Math..

[13]  Haim Hanani,et al.  On Resolvable Balanced Incomplete Block Designs , 1974, J. Comb. Theory, Ser. A.

[14]  Esther R. Lamken Constructions for generalized balanced tournament designs , 1994, Discret. Math..

[15]  Scott A. Vanstone,et al.  Existence results for doubly near resolvable (upsilon, 3, 2)-BIBDs , 1993, Discret. Math..

[16]  Richard M. Wilson,et al.  Constructions and Uses of Pairwise Balanced Designs , 1975 .

[17]  Ying Miao,et al.  Resolvable BIBDs with block size 7 and index 6 , 2001, Discret. Math..

[18]  Dijen Ray-Chaudhuri Coding Theory and Design Theory , 1990 .

[19]  Alan Hartman,et al.  Resolvable group divisible designs with block size 3 , 1989, Discret. Math..

[20]  Esther R. Lamken Existence results for generalized balanced tournament designs with block size 3 , 1993, Des. Codes Cryptogr..

[21]  S. A. VANSTONE,et al.  Doubly resolvable designs , 1980, Discret. Math..

[22]  E. Lamken Generalized balanced tournament designs , 1990 .

[23]  Scott A. Vanstone,et al.  Doubly resolvable designs from generalized Bhaskar Rao designs , 1989, Discret. Math..

[24]  Scott A. Vanstone,et al.  The Existence of Partitioned Balanced Tournament Designs , 1987 .

[25]  Richard M. Wilson,et al.  On resolvable designs , 1972, Discret. Math..

[26]  R. C. Bose,et al.  Essays in probability and statistics , 1971 .

[27]  E. R. Lamken,et al.  Four pairwise balanced designs , 1991, Des. Codes Cryptogr..

[28]  Henry Paul Smith RESOLVABLE AND DOUBLY RESOLVABLE DESIGNS WITH SPECIAL REFERENCE TO THE SCHEDULING OF DUPLICATE BRIDGE TOURNAMENTS , 1977 .

[29]  D. K. Ray-Chaudhuri Coding theory and design theory: part II, design theory , 1990 .

[30]  A. E. Brouwer,et al.  stichting mathematisch centrum , 2006 .

[31]  Alexander Rosa,et al.  On the Existence of Strong Kirkman Cubes of Order 39 and Block Size 3 , 1985 .

[32]  Scott A. Vanstone,et al.  The existence of a class of Kirkman squares of index 2 , 1988, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[33]  Esther R. Lamken A few more partitioned balanced tournament designs , 1996, Ars Comb..

[34]  Esther R. Lamken The existence of 3 orthogonal partitioned incomplete Latin squares of type tn , 1991, Discret. Math..

[35]  Scott A. Vanstone,et al.  On Mutually Orthogonal Resolutions and Near-Resolutions , 1982 .