Magnetostrictive Composite Material Systems Analytical/Experimental

Experimental and theoretical results are presented for a composite magnetostrictive material system. This material system contains Terfenol-D particles blended with a binder resin and cured in the presence of a magnetic field to form a 1–3 composite. Test data indicates that the magnetostrictive material can be preloaded in-situ with the binder matrix resulting in orientation of domains that facilitate strain responses comparable to monolithic Terfenol-D. Two constitutive equations for the monolithic material are described and a concentric cylinders model is used to predict the response of the composite structure. Experimental data obtained from the composite systems coincide with the analytical models within 10%. Particle size, resin system, and volume fraction are shown to significantly influence the response of the fabricated composite system.