Organic nanocrystals: an NMR study of cyclohexane in porous silica

The formation of cyclohexane nanocrystals in porous silica (60 A, 200 A and 500 A nominal pore sizes) of well characterized geometry has been studied using T 2 and T1ρ nuclear magnetic resonance (NMR) measurements over a temperature range from 295K to 77K. The confined solid was found to behave in a substantially different way from the bulk material, and exhibited pore size dependency. Below the melting point, multi-component relaxation times indicated a mixed phase system, with evidence for the coexistence of an ordered nanocrystal and a highly disordered region. The disordered region is of considerable interest since it is highly mobile and preliminary measurements have indicated anomalously fast diffusion. Measurements also demonstrated enhanced anisotropic reorientational motion, the suppression of the formation of the rigid lattice and the loss of the solid–solid phase transition for smaller pores.

[1]  J. Strange,et al.  Morphology of porous media studied by nuclear magnetic resonance , 1997 .

[2]  S. Stapf,et al.  Dynamics of plastic and liquid cyclohexane in bulk and in porous glasses studied by NMR methods , 1997 .

[3]  T. W. Żerda,et al.  Solid-solid phase transitions of cyclohexane in porous sol-gel glass , 1995 .

[4]  Rahman,et al.  Characterization of porous solids by NMR. , 1993, Physical review letters.

[5]  C. Jackson,et al.  The melting behavior of organic materials confined in porous solids , 1990 .

[6]  D’Orazio,et al.  Molecular diffusion and nuclear-magnetic-resonance relaxation of water in unsaturated porous silica glass. , 1990, Physical review. B, Condensed matter.

[7]  Warnock,et al.  Supercooled liquids and solids in porous glass. , 1987, Physical review. B, Condensed matter.

[8]  J. Strange,et al.  Pressure and temperature dependence of molecular motion in organic plastic crystals , 1978 .

[9]  L. Burnett Self‐diffusion in plastic cyclohexane , 1977 .

[10]  R. T. Squires,et al.  On the Interpretation and Significance of Nuclear Spin Relaxation by Translational Diffusion in Organic Plastic Crystals , 1976 .

[11]  R. Kahn,et al.  Crystal structure of cyclohexane I and II , 1973 .

[12]  J. H. Strange,et al.  Pressure dependence of self diffusion in the plastic crystals hexamethylethane, norbornylene and cyclohexane (Spin-lattice relaxation) , 1972 .

[13]  S. Roeder,et al.  Molecular Motions in Several Solids Studied by Nuclear Magnetic Relaxation in the Rotating Frame , 1970 .

[14]  J. H. Strange,et al.  A nuclear magnetic resonance sample temperature controller using liquid nitrogen injection , 1969 .

[15]  S. Leach,et al.  Effets de température sur les spectres électroniques du benzène dans le cyclohexane. études sur le polymorphisme cristallin du cyclohexane par la méthode de la sonde électronique , 1966 .

[16]  J. Sherwood,et al.  Self Diffusion in Cyclohexane Single Crystals , 1966 .

[17]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[18]  H. Szwarc N° 133. — Étude, par résonance paramagnétique électronique, de la recombinaison des radicaux libres produits par irradiation γ du cyclohexane, à 77 °K , 1962 .

[19]  E. Anderson,et al.  Diffusion in Liquids , 1959 .

[20]  E. R. Andrew,et al.  A nuclear magnetic resonance investigation of solid cyclohexane , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[21]  H. L. Fink,et al.  The Heat Capacity and Entropy, Heats of Transition, Fusion and Vaporization and the Vapor Pressures of Cyclohexane. The Vibrational Frequencies of Alicyclic Ring Systems1 , 1943 .