On the Rate-Independent Limit of Systems with Dry Friction and Small Viscosity

Rate-independent systems with nonconvex energies generate solutions with jumps. To resolve the full jump path we consider two difierent regularizations, namely (i) small viscosity and (ii) local minimization in the time discretized setting. After rescaling the solutions via arc-length parametrization we obtain a new limit problem, which is again rate independent. We establish convergence results for the viscously regularized solutions as well as for the time-discretized solutions. In general the limit function is no longer parametrized by arc length; however, another reparametrization leads to a solution. Using a Young-measure argument, we show that the latter reparamterization is not necessary if the dry-friction potential and the viscous potential satisfy a structural compatibility condition.

[1]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[2]  J. A. C. Martins,et al.  The evolution and rate problems and the computation of all possible evolutions in quasi-static frictional contact , 2003 .

[3]  J. Moreau Application of convex analysis to the treatment of elastoplastic systems , 1976 .

[4]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .

[5]  A. Mielke,et al.  On rate-independent hysteresis models , 2004 .

[6]  Gilles A. Francfort,et al.  Existence results for a class of rate-independent material models with nonconvex elastic energies , 2006 .

[7]  F.M.F. Simões,et al.  Dissipative graph solutions for a 2 degree-of-freedom quasistatic frictional contact problem , 1995 .

[8]  J. Moreau Evolution problem associated with a moving convex set in a Hilbert space , 1977 .

[9]  A. Mielke Flow properties for Young-measure solutions of semilinear hyperbolic problems , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[10]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[11]  Tomáš Roubíček,et al.  Relaxation in Optimization Theory and Variational Calculus , 1997 .

[12]  M. A. Efendiev On the compactness of the stable set for rate independent processes , 2003 .

[13]  Hugo Ribeiro,et al.  Notas de Matemática , 1949 .

[14]  J. A. C. Martins,et al.  Mathematical analysis of a two degree-of-freedom frictional contact problem with discontinuous solutions , 1998 .

[15]  H. Weinert Ekeland, I. / Temam, R., Convex Analysis and Variational Problems. Amsterdam‐Oxford. North‐Holland Publ. Company. 1976. IX, 402 S., Dfl. 85.00. US $ 29.50 (SMAA 1) , 1979 .

[16]  Weimin Han,et al.  Computational plasticity : the variational basis and numerical analysis , 1995 .

[17]  On the stability of quasi‐static paths for finite dimensional elastic‐plastic systems with hardening , 2007 .

[18]  A. Visintin Differential models of hysteresis , 1994 .

[19]  A. Mielke,et al.  A Variational Formulation of¶Rate-Independent Phase Transformations¶Using an Extremum Principle , 2002 .

[20]  M. Krasnosel’skiǐ,et al.  Systems with Hysteresis , 1989 .

[21]  Alexander Mielke,et al.  Chapter 6 – Evolution of Rate-Independent Systems , 2005 .

[22]  Alexander Mielke,et al.  Deriving new evolution equations for microstructures via relaxation of variational incremental problems , 2004 .

[23]  B. Mordukhovich,et al.  On Nonconvex Subdifferential Calculus in Banach Spaces , 1995 .

[24]  J. A. C. Martins,et al.  On an example of non-existence of solution to a quasistatic frictional contact problem , 1994 .

[25]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[26]  Riccarda Rossi,et al.  Existence and uniqueness results for general rate-independent hysteresis problems , 2005 .

[27]  On Nonconvex Subdieren tial Calculus in Banach Spaces 1 , 1995 .

[28]  E. Zeidler Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .

[29]  A. Visintin,et al.  On A Class Of Doubly Nonlinear Evolution Equations , 1990 .

[30]  Bernard Dacorogna,et al.  Weak Continuity and Weak Lower Semicontinuity of Non-Linear Functionals , 1982 .