Classical and Bayesian Inference Robustness in Multivariate Regression models

Some classical inference procedures can be shown to be completely robust in theses classes of multivariate distributions. These findings are used in the practically relevant context of regression models. We present a robust bayesian analysis and indicate the links between classical and Bayesian results. In particular, for the regression model with i.i.d. errors up to a scale, a formal characterization is provided for both classical and Bayesian robustness results concerning inference on the regression parameters.

[1]  Mark F. J. Steel,et al.  On the use of panel data in stochastic frontier models with improper priors , 1997 .

[2]  M. Steel,et al.  Modeling and Inference with υ-Spherical Distributions , 1995 .

[3]  M. Steel,et al.  The continuous multivariate location-scale model revisited : A tale of robustness , 1994 .

[4]  Mark F. J. Steel,et al.  Robust Bayesian inference in lq-spherical models , 1993 .

[5]  K. Fang,et al.  Generalized Multivariate Analysis , 1990 .

[6]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[7]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[8]  Kai-Tai Fang,et al.  Maximum‐likelihood estimates and likelihood‐ratio criteria for multivariate elliptically contoured distributions , 1986 .

[9]  Jacques H. Dreze,et al.  Bayesian regression analysis using poly-t densities , 1977 .

[10]  Arnold Zellner,et al.  An Introduction to Bayesian Inference in Econometrics. , 1974 .

[11]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[12]  J. Dickey Three Multidimensional-integral Identities with Bayesian Applications , 1968 .

[13]  J. Dickey Smoothed Estimates for Multinomial Cell Probabilities , 1968 .

[14]  G. C. Tiao,et al.  Bayes's theorem and the use of prior knowledge in regression analysis , 1964 .

[15]  K. Ng,et al.  Inference for linear models with radially decomposable error , 1994 .

[16]  Christopher J. Nachtsheim,et al.  A New Family of Multivariate Distributions with Applications to Monte Carlo Studies , 1988 .

[17]  A. Dawid Spherical Matrix Distributions and a Multivariate Model , 1977 .

[18]  J. Boot,et al.  Investment Demand: An Empirical Contribution to the Aggregation Problem , 1960 .