Infrared-active phonons in carbon nanotubes

The aim of the present paper is to identify the main infrared vibrational features of carbon nanotubes. In this goal, infrared experiments have been performed on different well-characterized single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs) as well as graphite and carbon aerogel. The comparison between the experimental spectra measured on these different samples allows us to identify the infrared-active modes of carbon nanotubes. In SWCNTs, the tangential modes are located around 1590 cm−1 and the radial mode around 860 cm−1. This latter mode vanishes in the infrared spectrum of DWCNTs. Finally, in the infrared spectra of all the carbon nanotubes investigated, a band around 1200 cm−1 is evidenced and assigned to the D-band (disorder-induced band).

[1]  I. Milošević,et al.  Full symmetry, optical activity, and potentials of single-wall and multiwall nanotubes , 1999 .

[2]  Pavel Nikolaev,et al.  Catalytic growth of single-walled manotubes by laser vaporization , 1995 .

[3]  M. Balkanski,et al.  Lattice dynamics of single-walled carbon nanotubes , 1999 .

[4]  M. Balkanski,et al.  ELASTIC PROPERTIES OF SINGLE-WALLED CARBON NANOTUBES , 2000 .

[5]  R Saito,et al.  Infrared-active vibrational modes of single-walled carbon nanotubes. , 2005, Physical review letters.

[6]  Riichiro Saito,et al.  Raman intensity of single-wall carbon nanotubes , 1998 .

[7]  M. S. Dresselhaus,et al.  Observations of the D-band feature in the Raman spectra of carbon nanotubes , 2001 .

[8]  E. Flahaut,et al.  Raman spectroscopy of iodine-doped double-walled carbon nanotubes , 2004, cond-mat/0410664.

[9]  P. Lambin,et al.  Rings of Double-Walled Carbon Nanotube Bundles , 2003 .

[10]  Un Jeong Kim,et al.  Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. , 2005, Journal of the American Chemical Society.

[11]  L. Henrard,et al.  Diffraction by finite-size crystalline bundles of single wall nanotubes , 1999 .

[12]  Quan Qing,et al.  Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes , 2003 .

[13]  P. Eklund,et al.  Vibrational modes of carbon nanotubes; Spectroscopy and theory , 1995 .

[14]  W. K. Maser,et al.  Large-scale production of single-walled carbon nanotubes by the electric-arc technique , 1997, Nature.

[15]  M. Dresselhaus,et al.  Phonon modes in carbon nanotubules , 1993 .

[16]  J. Lu,et al.  Vibrational modes of carbon nanotubes and nanoropes , 1999 .

[17]  Georg Kresse,et al.  Accurate density functional calculations for the phonon dispersion relations of graphite layer and carbon nanotubes , 2003 .

[18]  Werner J. Blau,et al.  Spectroscopic study of carbon nanotubes , 1994, Optics & Photonics.

[19]  I. Milošević,et al.  Single-wall carbon nanotubes phonon spectra: Symmetry-based calculations , 2003 .

[20]  M. Dresselhaus,et al.  Phonons in carbon nanotubes , 2000 .

[21]  F. Frusteri,et al.  Characterization of Carbon Nanotubes by TEM and Infrared Spectroscopy , 2004 .

[22]  Emmanuel Flahaut,et al.  Gram-scale CCVD synthesis of double-walled carbon nanotubes. , 2003, Chemical communications.

[23]  M. Dresselhaus,et al.  Probing phonon dispersion relations of graphite by double resonance Raman scattering. , 2001, Physical review letters.

[24]  Christian Thomsen,et al.  INFRARED ACTIVE PHONONS IN SINGLE-WALLED CARBON NANOTUBES , 1998 .

[25]  James A. Ritter,et al.  Effect of synthesis pH on the structure of carbon xerogels , 1997 .

[26]  G. Lucovsky,et al.  Infrared active optical vibrations of graphite , 1977 .

[27]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[28]  Thomsen,et al.  Double resonant raman scattering in graphite , 2000, Physical review letters.