Variable Reordering and Sifting for QMDD

This paper considers variable reordering for quantum multiple-valued decision diagrams (QMDD) used to represent the matrices describing reversible and quantum gates and circuits. An efficient method for adjacent variable interchange is presented and this method is employed to implement sifting of QMDDs. Experimental results are presented showing the effectiveness of the proposed techniques.

[1]  D. Michael Miller,et al.  QMDD: A Decision Diagram Structure for Reversible and Quantum Circuits , 2006, 36th International Symposium on Multiple-Valued Logic (ISMVL'06).

[2]  Rolf Drechsler,et al.  Augmented sifting of multiple-valued decision diagrams , 2003, 33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings..

[3]  R. Rudell Dynamic variable ordering for ordered binary decision diagrams , 1993, Proceedings of 1993 International Conference on Computer Aided Design (ICCAD).

[4]  Gerhard W. Dueck,et al.  Reversible Logic Synthesis , 2020, Reversible and DNA Computing.

[5]  D. Michael Miller,et al.  A Decision Diagram Package for Reversible and Quantum Circuit Simulation , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[6]  D. M. Miller,et al.  A Synthesis Method for MVL Reversible Logic , 2004 .

[7]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[8]  亀山 充隆 Decision Diagram Techniques for Micro- and Nanoelectronic Design HANDBOOK, S.N. Yanushkevich, D.M. Milller, V.P. Shmerko, and R.S. Stankovic (著), "Decision Diagram Techniques for Micro- and Nanoelectronic Design HANDBOOK", CRC Press, (2006), B5判, 定価($99.95) , 2006 .

[9]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[10]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[11]  John P. Hayes,et al.  Quantum Circuit Simulation , 2009 .