Generating macroscopic chaos in a network of globally coupled phase oscillators.

We consider an infinite network of globally coupled phase oscillators in which the natural frequencies of the oscillators are drawn from a symmetric bimodal distribution. We demonstrate that macroscopic chaos can occur in this system when the coupling strength varies periodically in time. We identify period-doubling cascades to chaos, attractor crises, and horseshoe dynamics for the macroscopic mean field. Based on recent work that clarified the bifurcation structure of the static bimodal Kuramoto system, we qualitatively describe the mechanism for the generation of such complicated behavior in the time varying case.

[1]  Huzihiro Araki,et al.  International Symposium on Mathematical Problems in Theoretical Physics , 1975 .

[2]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[3]  Ernest Barreto,et al.  Synchronization in interacting populations of heterogeneous oscillators with time-varying coupling. , 2008, Chaos.

[4]  E. Ott,et al.  The onset of synchronization in systems of globally coupled chaotic and periodic oscillators , 2002, nlin/0205018.

[5]  E. Ott,et al.  Exact results for the Kuramoto model with a bimodal frequency distribution. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Ernest Barreto,et al.  Ion concentration dynamics as a mechanism for neuronal bursting , 2010, Journal of biological physics.

[7]  Jürgen Kurths,et al.  Alternating Locking Ratios in Imperfect Phase Synchronization , 1999 .

[8]  Hugues Chaté,et al.  Lyapunov analysis captures the collective dynamics of large chaotic systems. , 2009, Physical review letters.

[9]  S. Strogatz,et al.  Dynamics of a large system of coupled nonlinear oscillators , 1991 .

[10]  E. Ott,et al.  Long time evolution of phase oscillator systems. , 2009, Chaos.

[11]  Wiesenfeld,et al.  Averaged equations for Josephson junction series arrays. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Renato Spigler,et al.  Nonlinear stability of incoherence and collective synchronization in a population of coupled oscillators , 1992 .

[13]  J. Crawford,et al.  Amplitude expansions for instabilities in populations of globally-coupled oscillators , 1993, patt-sol/9310005.

[14]  E. Ott,et al.  Synchronization in networks of networks: the onset of coherent collective behavior in systems of interacting populations of heterogeneous oscillators. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Celso Grebogi,et al.  From High Dimensional Chaos to Stable Periodic Orbits: The Structure of Parameter Space , 1997 .

[16]  Leandro M Alonso,et al.  Average dynamics of a driven set of globally coupled excitable units. , 2011, Chaos.

[17]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[18]  F. Verhulst Nonlinear Differential Equations and Dynamical Systems , 1989 .

[19]  E. Ott,et al.  Low dimensional behavior of large systems of globally coupled oscillators. , 2008, Chaos.

[20]  M. Rosenblum,et al.  Partially integrable dynamics of hierarchical populations of coupled oscillators. , 2008, Physical review letters.

[21]  Yoshiki Kuramoto,et al.  In International Symposium on Mathematical Problems in Theoretical Physics , 1975 .

[22]  Naoko Nakagawa,et al.  From collective oscillations to collective chaos in a globally coupled oscillator system , 1994 .

[23]  P. Hövel,et al.  Loss of coherence in dynamical networks: spatial chaos and chimera states. , 2011, Physical review letters.

[24]  Hansel,et al.  Clustering in globally coupled phase oscillators. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[25]  Diego Pazó,et al.  Time delay in the Kuramoto model with bimodal frequency distribution. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  A. Pluchino,et al.  Phase transitions and chaos in long-range models of coupled oscillators , 2008, EPL (Europhysics Letters).

[27]  John Guckenheimer,et al.  Averaging and Perturbation from a Geometric Viewpoint , 1983 .

[28]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[29]  E. Ott Chaos in Dynamical Systems: Contents , 2002 .

[30]  H. E. Kuhn,et al.  BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, , 2007 .

[31]  Grzegorz Swiatek,et al.  Generic hyperbolicity in the logistic family , 1997 .

[32]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[33]  Mw Hirsch,et al.  Chaos In Dynamical Systems , 2016 .

[34]  B. M. Fulk MATH , 1992 .

[35]  Steven H Strogatz,et al.  Invariant submanifold for series arrays of Josephson junctions. , 2008, Chaos.

[36]  J. Yorke,et al.  Antimonotonicity: Concurrent creation and annihilation of periodic orbits , 1990 .

[37]  Yoshiki Kuramoto,et al.  Self-entrainment of a population of coupled non-linear oscillators , 1975 .

[38]  Peter A. Tass,et al.  Chaotic Attractor in the Kuramoto Model , 2005, Int. J. Bifurc. Chaos.

[39]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[40]  Carlo R. Laing,et al.  The dynamics of chimera states in heterogeneous Kuramoto networks , 2009 .

[41]  Monika Sharma,et al.  Chemical oscillations , 2006 .

[42]  Joseph D Skufca,et al.  Communication and synchronization in, disconnected networks with dynamic topology: moving neighborhood networks. , 2004, Mathematical biosciences and engineering : MBE.

[43]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[44]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[45]  A. Winfree The geometry of biological time , 1991 .

[46]  Diego Pazó,et al.  Existence of hysteresis in the Kuramoto model with bimodal frequency distributions. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  S. Strogatz,et al.  Constants of motion for superconducting Josephson arrays , 1994 .

[48]  S. Kuznetsov,et al.  Collective phase chaos in the dynamics of interacting oscillator ensembles. , 2010, Chaos.