Sensitive radiofrequency readout of quantum dots using an ultra-low-noise SQUID amplifier

Fault-tolerant spin-based quantum computers will require fast and accurate qubit read out. This can be achieved using radiofrequency reflectometry given sufficient sensitivity to the change in quantum capacitance associated with the qubit states. Here, we demonstrate a 23-fold improvement in capacitance sensitivity by supplementing a cryogenic semiconductor amplifier with a SQUID preamplifier. The SQUID amplifier operates at a frequency near 200 MHz and achieves a noise temperature below 600 mK when integrated into a reflectometry circuit, which is within a factor 120 of the quantum limit. It enables a record sensitivity to capacitance of 0.07 aF / Hz. The setup is used to acquire charge stability diagrams of a gate-defined double quantum dot in a short time with a signal-to-noise ration of about 38 in 1 μ s of integration time.

[1]  J. R. Petta,et al.  Fast charge sensing of a cavity-coupled double quantum dot using a Josephson parametric amplifier , 2015, 1502.01283.

[2]  Sylvain Barraud,et al.  Radio-Frequency Capacitive Gate-Based Sensing , 2018, Physical Review Applied.

[3]  John Clarke,et al.  Superconducting quantum interference device as a near-quantum-limited amplifier at 0.5 GHz , 2001 .

[4]  N. Kalhor,et al.  Rapid gate-based spin read-out in silicon using an on-chip resonator , 2019, Nature Nanotechnology.

[5]  M. F. Gonzalez-Zalba,et al.  Fast Gate-Based Readout of Silicon Quantum Dots Using Josephson Parametric Amplification. , 2019, Physical review letters.

[6]  J. Pekola,et al.  Lumped-element Josephson parametric amplifier at 650 MHz for nano-calorimeter readout , 2017 .

[7]  Liuqi Yu,et al.  Spectroscopy of Quantum Dot Orbitals with In-Plane Magnetic Fields. , 2018, Physical review letters.

[8]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[9]  Manuel Castellanos-Beltran,et al.  Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator , 2007 .

[10]  M. Vinet,et al.  Gate-reflectometry dispersive readout and coherent control of a spin qubit in silicon , 2018, Nature Communications.

[11]  Z. R. Wasilewski,et al.  Coherent control of three-spin states in a triple quantum dot , 2011, Nature Physics.

[12]  W. V. D. Wiel,et al.  Electron transport through double quantum dots , 2002, cond-mat/0205350.

[13]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[14]  K. Lehnert,et al.  Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator , 2007, 0706.2373.

[15]  Jacob M. Taylor,et al.  Triplet–singlet spin relaxation via nuclei in a double quantum dot , 2005, Nature.

[16]  D. Ritchie,et al.  Charge and spin state readout of a double quantum dot coupled to a resonator. , 2010, Nano letters.

[17]  D. Ritchie,et al.  A non-invasive electron thermometer based on charge sensing of a quantum dot , 2013, 1305.6881.

[18]  Masanao Ozawa,et al.  Soundness and completeness of quantum root-mean-square errors , 2018, npj Quantum Information.

[19]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[20]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[21]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[22]  E. Laird,et al.  Photon-assisted tunneling and charge dephasing in a carbon nanotube double quantum dot , 2016, 1603.06278.

[23]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[24]  Andrew S. Dzurak,et al.  Gate-based single-shot readout of spins in silicon , 2018, Nature Nanotechnology.

[25]  C. Marcus,et al.  Fast charge sensing of Si/SiGe quantum dots via a high-frequency accumulation gate. , 2019, Nano letters.

[26]  D. Ritchie,et al.  Sensitive radio-frequency measurements of a quantum dot by tuning to perfect impedance matching , 2015, 1510.06944.

[27]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[28]  T. Duty,et al.  An ultrasensitive radio-frequency single-electron transistor working up to 4.2 K , 2006, cond-mat/0602518.

[29]  A. Gossard,et al.  Rapid single-shot measurement of a singlet-triplet qubit. , 2009, Physical review letters.

[30]  Leo P. Kouwenhoven,et al.  Rapid Detection of Coherent Tunneling in an InAs Nanowire Quantum Dot through Dispersive Gate Sensing , 2018, Physical Review Applied.

[31]  Maud Vinet,et al.  Level Spectrum and Charge Relaxation in a Silicon Double Quantum Dot Probed by Dual-Gate Reflectometry. , 2016, Nano letters.

[32]  M. F. Gonzalez-Zalba,et al.  Dispersively Detected Pauli Spin-Blockade in a Silicon Nanowire Field-Effect Transistor. , 2015, Nano letters.

[33]  Charles M. Lieber,et al.  Hole spin coherence in a Ge/Si heterostructure nanowire. , 2014, Nano letters.

[34]  M. Veldhorst,et al.  Silicon CMOS architecture for a spin-based quantum computer , 2016, Nature Communications.

[35]  Robert McDermott,et al.  Radio-frequency amplifiers based on dc SQUIDs , 2010 .

[36]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[37]  Yasunobu Nakamura,et al.  Flux-driven Josephson parametric amplifier , 2008, 0808.1386.

[38]  J. R. Petta,et al.  Radio frequency charge sensing in InAs nanowire double quantum dots , 2012, 1205.6494.

[39]  Clarke,et al.  Hot-electron effects in metals. , 1994, Physical review. B, Condensed matter.

[40]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[41]  J. Nelson,et al.  Rapid High-Fidelity Spin-State Readout in Si / Si - Ge Quantum Dots via rf Reflectometry , 2019, Physical Review Applied.

[42]  Maud Vinet,et al.  Gate-based high fidelity spin readout in a CMOS device , 2018, Nature Nanotechnology.

[43]  Michelle Y. Simmons,et al.  Radio frequency reflectometry and charge sensing of a precision placed donor in silicon , 2015, 1509.03315.

[44]  I. Siddiqi,et al.  A near–quantum-limited Josephson traveling-wave parametric amplifier , 2015, Science.

[45]  E. Laird,et al.  A coherent nanomechanical oscillator driven by single-electron tunnelling , 2019, Nature Physics.

[46]  R J Schoelkopf,et al.  Radio-frequency single-electron transistor as readout device for qubits: charge sensitivity and backaction. , 2001, Physical review letters.

[47]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[48]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[49]  L. M. K. Vandersypen,et al.  Rapid high-fidelity gate-based spin read-out in silicon , 2019, 1901.00687.

[50]  R. Ishihara,et al.  Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent , 2017, npj Quantum Information.

[51]  J I Colless,et al.  Dispersive readout of a few-electron double quantum dot with fast RF gate sensors. , 2012, Physical review letters.

[52]  J. Wabnig,et al.  Measuring the complex admittance of a carbon nanotube double quantum dot. , 2011, Physical review letters.

[53]  A. Gossard,et al.  Effect of exchange interaction on spin dephasing in a double quantum dot. , 2005, Physical review letters.

[54]  M. F. Gonzalez-Zalba,et al.  A high-sensitivity gate-based charge sensor in silicon , 2014, 1405.2755.