Sensitive radiofrequency readout of quantum dots using an ultra-low-noise SQUID amplifier
暂无分享,去创建一个
G. A. D. Briggs | D. A. Ritchie | G. A. C. Jones | L. C. Camenzind | D. M. Zumbühl | C. G. Smith | F. Vigneau | N. Ares | E. A. Laird | D. Ritchie | E. Laird | G. Briggs | I. Farrer | D. Zumbühl | L. Camenzind | Liuqi Yu | N. Ares | G. Jones | F. Schupp | A. Mavalankar | I. Farrer | Y. Wen | F. J. Schupp | Y. Wen | A. Mavalankar | J. Griffiths | L. Yu | F. Vigneau | Y. Wen | L. Yu | C. Smith | J. Griffiths | D. A. Ritchie | C. Smith
[1] J. R. Petta,et al. Fast charge sensing of a cavity-coupled double quantum dot using a Josephson parametric amplifier , 2015, 1502.01283.
[2] Sylvain Barraud,et al. Radio-Frequency Capacitive Gate-Based Sensing , 2018, Physical Review Applied.
[3] John Clarke,et al. Superconducting quantum interference device as a near-quantum-limited amplifier at 0.5 GHz , 2001 .
[4] N. Kalhor,et al. Rapid gate-based spin read-out in silicon using an on-chip resonator , 2019, Nature Nanotechnology.
[5] M. F. Gonzalez-Zalba,et al. Fast Gate-Based Readout of Silicon Quantum Dots Using Josephson Parametric Amplification. , 2019, Physical review letters.
[6] J. Pekola,et al. Lumped-element Josephson parametric amplifier at 650 MHz for nano-calorimeter readout , 2017 .
[7] Liuqi Yu,et al. Spectroscopy of Quantum Dot Orbitals with In-Plane Magnetic Fields. , 2018, Physical review letters.
[8] B. Terhal. Quantum error correction for quantum memories , 2013, 1302.3428.
[9] Manuel Castellanos-Beltran,et al. Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator , 2007 .
[10] M. Vinet,et al. Gate-reflectometry dispersive readout and coherent control of a spin qubit in silicon , 2018, Nature Communications.
[11] Z. R. Wasilewski,et al. Coherent control of three-spin states in a triple quantum dot , 2011, Nature Physics.
[12] W. V. D. Wiel,et al. Electron transport through double quantum dots , 2002, cond-mat/0205350.
[13] S. Girvin,et al. Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.
[14] K. Lehnert,et al. Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator , 2007, 0706.2373.
[15] Jacob M. Taylor,et al. Triplet–singlet spin relaxation via nuclei in a double quantum dot , 2005, Nature.
[16] D. Ritchie,et al. Charge and spin state readout of a double quantum dot coupled to a resonator. , 2010, Nano letters.
[17] D. Ritchie,et al. A non-invasive electron thermometer based on charge sensing of a quantum dot , 2013, 1305.6881.
[18] Masanao Ozawa,et al. Soundness and completeness of quantum root-mean-square errors , 2018, npj Quantum Information.
[19] M. Mariantoni,et al. Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.
[20] 장윤희,et al. Y. , 2003, Industrial and Labor Relations Terms.
[21] Jacob M. Taylor,et al. Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.
[22] E. Laird,et al. Photon-assisted tunneling and charge dephasing in a carbon nanotube double quantum dot , 2016, 1603.06278.
[23] Tsuyoshi Murata,et al. {m , 1934, ACML.
[24] Andrew S. Dzurak,et al. Gate-based single-shot readout of spins in silicon , 2018, Nature Nanotechnology.
[25] C. Marcus,et al. Fast charge sensing of Si/SiGe quantum dots via a high-frequency accumulation gate. , 2019, Nano letters.
[26] D. Ritchie,et al. Sensitive radio-frequency measurements of a quantum dot by tuning to perfect impedance matching , 2015, 1510.06944.
[27] R. Sarpong,et al. Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.
[28] T. Duty,et al. An ultrasensitive radio-frequency single-electron transistor working up to 4.2 K , 2006, cond-mat/0602518.
[29] A. Gossard,et al. Rapid single-shot measurement of a singlet-triplet qubit. , 2009, Physical review letters.
[30] Leo P. Kouwenhoven,et al. Rapid Detection of Coherent Tunneling in an InAs Nanowire Quantum Dot through Dispersive Gate Sensing , 2018, Physical Review Applied.
[31] Maud Vinet,et al. Level Spectrum and Charge Relaxation in a Silicon Double Quantum Dot Probed by Dual-Gate Reflectometry. , 2016, Nano letters.
[32] M. F. Gonzalez-Zalba,et al. Dispersively Detected Pauli Spin-Blockade in a Silicon Nanowire Field-Effect Transistor. , 2015, Nano letters.
[33] Charles M. Lieber,et al. Hole spin coherence in a Ge/Si heterostructure nanowire. , 2014, Nano letters.
[34] M. Veldhorst,et al. Silicon CMOS architecture for a spin-based quantum computer , 2016, Nature Communications.
[35] Robert McDermott,et al. Radio-frequency amplifiers based on dc SQUIDs , 2010 .
[36] D. DiVincenzo,et al. The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.
[37] Yasunobu Nakamura,et al. Flux-driven Josephson parametric amplifier , 2008, 0808.1386.
[38] J. R. Petta,et al. Radio frequency charge sensing in InAs nanowire double quantum dots , 2012, 1205.6494.
[39] Clarke,et al. Hot-electron effects in metals. , 1994, Physical review. B, Condensed matter.
[40] L. Vandersypen,et al. Spins in few-electron quantum dots , 2006, cond-mat/0610433.
[41] J. Nelson,et al. Rapid High-Fidelity Spin-State Readout in Si / Si - Ge Quantum Dots via rf Reflectometry , 2019, Physical Review Applied.
[42] Maud Vinet,et al. Gate-based high fidelity spin readout in a CMOS device , 2018, Nature Nanotechnology.
[43] Michelle Y. Simmons,et al. Radio frequency reflectometry and charge sensing of a precision placed donor in silicon , 2015, 1509.03315.
[44] I. Siddiqi,et al. A near–quantum-limited Josephson traveling-wave parametric amplifier , 2015, Science.
[45] E. Laird,et al. A coherent nanomechanical oscillator driven by single-electron tunnelling , 2019, Nature Physics.
[46] R J Schoelkopf,et al. Radio-frequency single-electron transistor as readout device for qubits: charge sensitivity and backaction. , 2001, Physical review letters.
[47] J. P. Dehollain,et al. A two-qubit logic gate in silicon , 2014, Nature.
[48] Thomas de Quincey. [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.
[49] L. M. K. Vandersypen,et al. Rapid high-fidelity gate-based spin read-out in silicon , 2019, 1901.00687.
[50] R. Ishihara,et al. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent , 2017, npj Quantum Information.
[51] J I Colless,et al. Dispersive readout of a few-electron double quantum dot with fast RF gate sensors. , 2012, Physical review letters.
[52] J. Wabnig,et al. Measuring the complex admittance of a carbon nanotube double quantum dot. , 2011, Physical review letters.
[53] A. Gossard,et al. Effect of exchange interaction on spin dephasing in a double quantum dot. , 2005, Physical review letters.
[54] M. F. Gonzalez-Zalba,et al. A high-sensitivity gate-based charge sensor in silicon , 2014, 1405.2755.