Functional imaging of the human brain using electrical impedance tomography

................................................................................................................................. iii Lay Summary ........................................................................................................................ vi Abbreviations ...................................................................................................................... viii Chapter

[1]  A Köksal,et al.  Determination of optimum injected current patterns in electrical impedance tomography. , 1995, Physiological measurement.

[2]  Myers Re,et al.  Changes in cortical impedance and EEG activity induced by profound hypotension. , 1975 .

[3]  Lior Horesh,et al.  Design of electrodes and current limits for low frequency electrical impedance tomography of the brain , 2007, Medical & Biological Engineering & Computing.

[4]  A Hartov,et al.  Anatomically accurate hard priors for transrectal electrical impedance tomography (TREIT) of the prostate , 2012, Physiological measurement.

[5]  Abderrahman Bouhamidi,et al.  A generalized global Arnoldi method for ill-posed matrix equations , 2012, J. Comput. Appl. Math..

[6]  Xuetao Shi,et al.  Pseudo-polar drive patterns for brain electrical impedance tomography , 2006, Physiological measurement.

[7]  Craig S. Anderson,et al.  Feasibility of electrical impedance tomography in haemorrhagic stroke treatment using adaptive mesh , 2010 .

[8]  M. Bodó,et al.  Rheoencephalography (REG) as a Non-Invasive Monitoring Alternative for the Assessment of Brain Blood Flow , 2004 .

[9]  D S Holder,et al.  Imaging of physiologically evoked responses by electrical impedance tomography with cortical electrodes in the anaesthetized rabbit. , 1996, Physiological measurement.

[10]  J. Rosell,et al.  Skin impedance from 1 Hz to 1 MHz , 1988, IEEE Transactions on Biomedical Engineering.

[11]  J. Haueisen,et al.  Role of Soft Bone, CSF and Gray Matter in EEG Simulations , 2003, Brain Topography.

[12]  E. W. Randall,et al.  A 1000-measurement frames/second ERT data capture system with real-time visualization , 2005, IEEE Sensors Journal.

[13]  Patient examinations using electrical impedance tomography--sources of interference in the intensive care unit. , 2011, Physiological measurement.

[14]  Brian H. Brown,et al.  Medical impedance tomography and process impedance tomography: a brief review , 2001 .

[15]  W Sansen,et al.  Electrical impedance tomography systems based on voltage drive. , 1992, Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics.

[16]  R H Bayford,et al.  The effect of layers in imaging brain function using electrical impedance tomograghy. , 2004, Physiological measurement.

[17]  Ning Liu ACT4: A high-precision, multi-frequency electrical impedance tomograph , 2007 .

[18]  Dong Liu,et al.  Estimation of conductivity changes in a region of interest with electrical impedance tomography , 2014, 1403.6587.

[19]  J. Kaipio,et al.  Compensation of errors due to discretization, domain truncation and unknown contact impedances in electrical impedance tomography , 2009 .

[20]  D. Oldenburg,et al.  A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems , 2004 .

[21]  Maria Rosaria Russo,et al.  A GCV based Arnoldi-Tikhonov regularization method , 2013, BIT Numerical Mathematics.

[22]  F. H. Lopes da Silva,et al.  In vivo measurement of the brain and skull resistivities using an EIT-based method and the combined analysis of SEF/SEP data , 2003, IEEE Transactions on Biomedical Engineering.

[23]  Hugh McCann,et al.  Tackling modelling error in the application of electrical impedance tomography to the head , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[24]  J P Kaipio,et al.  Assessment of errors in static electrical impedance tomography with adjacent and trigonometric current patterns. , 1997, Physiological measurement.

[25]  R H Bayford,et al.  Electrical impedance tomography spectroscopy (EITS) for human head imaging. , 2003, Physiological measurement.

[26]  Martin Schweiger,et al.  MULTILEVEL PRECONDITIONING FOR 3D LARGE-SCALE SOFT-FIELD MEDICAL APPLICATIONS MODELLING , 2006 .

[27]  R. C. Waterfall,et al.  EIT voltage changes on the human scalp due to brain stimulus , 2005, 15th International Conference on Electronics, Communications and Computers (CONIELECOMP'05).

[28]  W. Poewe,et al.  Auditory startle reaction in primary blepharospasm , 2007, Movement disorders : official journal of the Movement Disorder Society.

[29]  Ville Kolehmainen,et al.  Compensation of modeling errors due to unknown domain boundary in diffuse optical tomography. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[30]  Yan Li,et al.  A Study of white matter and skull inhomogeneous anisotropic tissue conductivities on EEG forward head modeling , 2008, 2008 11th International Conference on Computer and Information Technology.

[31]  Laura M Parkes,et al.  Inability to directly detect magnetic field changes associated with neuronal activity , 2007, Magnetic resonance in medicine.

[32]  David S. Holder,et al.  Impedance changes recorded with scalp electrodes during visual evoked responses: Implications for Electrical Impedance Tomography of fast neural activity , 2009, NeuroImage.

[33]  William R B Lionheart,et al.  A MATLAB-based toolkit for three-dimensional Electrical Impedance Tomography: A contribution to the EIDORS project , 2002 .

[34]  Guang Cheng,et al.  Correlation Between Structure and Resistivity Variations of the Live Human Skull , 2008, IEEE Transactions on Biomedical Engineering.

[35]  Hugh McCann,et al.  Sub-second functional imaging by Electrical Impedance Tomography , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[36]  D. Holder,et al.  Large-Scale Non-Linear 3D Reconstruction Algorithms for Electrical Impedance Tomography of the Human Head , 2007 .

[37]  J. Hadamard Sur les problemes aux derive espartielles et leur signification physique , 1902 .

[38]  V. Raicu,et al.  A quantitative approach to the dielectric properties of the skin. , 2000, Physics in medicine and biology.

[39]  F G HIRSCH,et al.  The electrical conductivity of blood. I: Relationship to erythrocyte concentration. , 1950, Blood.

[40]  T. F. Oostendorp,et al.  The conductivity of the human skull in vivo and in vitro , 1999, Proceedings of the First Joint BMES/EMBS Conference. 1999 IEEE Engineering in Medicine and Biology 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society (Cat. N.

[41]  Katrina Wendel,et al.  Correlation between Live and Post Mortem Skull Conductivity Measurements , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[42]  Guoqiang Yu,et al.  Cerebral monitoring during carotid endarterectomy using near-infrared diffuse optical spectroscopies and electroencephalogram , 2011, Physics in medicine and biology.

[43]  VARIABILITY IN EIT IMAGES OF LUNGS : EFFECT OF IMAGE RECONSTRUCTION REFERENCE , 2004 .

[44]  R. Mahajan,et al.  Transient hyperaemic response to assess vascular reactivity of skin; effect of locally iontophoresed sodium nitroprusside. , 2002, British journal of anaesthesia.

[45]  R Galambos,et al.  Evoked resistance shifts in unanesthetized cats. , 1968, Experimental neurology.

[46]  Don M. Tucker,et al.  Regional head tissue conductivity estimation for improved EEG analysis , 2000, IEEE Transactions on Biomedical Engineering.

[47]  H. C. Burger,et al.  Measurements of the specific Resistance of the human Body to direct Current , 2009 .

[48]  H. McCann,et al.  Subsecond observations of EIT voltage changes on the human scalp due to brain stimulus , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[49]  R H Smallwood,et al.  Movement artefact rejection in impedance pneumography using six strategically placed electrodes. , 2000, Physiological measurement.

[50]  F. Peters,et al.  Some numerical results on the influence of measurement strategies and load patterns in the EIT inverse problem , 2010 .

[51]  EEG signatures of auditory activity correlate with simultaneously recorded fMRI responses in humans , 2010, NeuroImage.

[52]  A Adler,et al.  Objective selection of hyperparameter for EIT , 2006, Physiological measurement.

[53]  William R B Lionheart,et al.  Validation of a finite-element solution for electrical impedance tomography in an anisotropic medium , 2007, Physiological measurement.

[54]  J. D. Munck,et al.  The electric resistivity of human tissues (100 Hz-10 MHz): a meta-analysis of review studies. , 1999, Physiological measurement.

[55]  Michel Roussignol,et al.  Bayesian statistics of non-linear inverse problems: example of the magnetotelluric 1-D inverse problem , 1994 .

[56]  W. Landau,et al.  Some relations between resistivity and electrical activity in the cerebral cortex of the cat. , 1955, Journal of cellular and comparative physiology.

[57]  Artur Polinski,et al.  The contribution of blood-flow-induced conductivity changes to measured impedance , 2005, IEEE Transactions on Biomedical Engineering.

[58]  Martin Schuettler,et al.  A novel method for recording neuronal depolarization with recording at 125–825 Hz: implications for imaging fast neural activity in the brain with electrical impedance tomography , 2011, Medical & Biological Engineering & Computing.

[59]  Inéz Frerichs,et al.  Electrical Impedance Tomography and its Perspectives in Intensive Care Medicine , 2006 .

[60]  Daniela Calvetti,et al.  Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing , 2007 .

[61]  David Isaacson,et al.  A method for analyzing electrical impedance spectroscopy data from breast cancer patients , 2007, Physiological measurement.

[62]  H McCann,et al.  Low-noise current excitation sub-system for medical EIT , 2008, Physiological measurement.

[63]  William R B Lionheart EIT reconstruction algorithms: pitfalls, challenges and recent developments. , 2004, Physiological measurement.

[64]  G.J. Saulnier,et al.  An Electrical Impedance Spectroscopy System for Breast Cancer Detection , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[65]  Te Tang,et al.  Detection of intraventricular blood using EIT in a neonatal piglet model , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[66]  L. Montgomery,et al.  Measurement of brain electrical impedance: animal studies in rheoencephalography. , 2003, Aviation, space, and environmental medicine.

[67]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[68]  J. Latikka,et al.  Conductivity of living intracranial tissues. , 2001, Physics in medicine and biology.

[69]  D S Holder,et al.  Current approaches to analogue instrumentation design in electrical impedance tomography , 1996, Physiological measurement.

[70]  Maria Rosaria Russo,et al.  On Krylov projection methods and Tikhonov regularization , 2015 .

[71]  D S Holder,et al.  An electrode addressing protocol for imaging brain function with electrical impedance tomography using a 16-channel semi-parallel system , 2009, Physiological measurement.

[72]  Gian Domenico Iannetti,et al.  Coupling of simultaneously acquired electrophysiological and haemodynamic responses during visual stimulation. , 2010, Magnetic resonance imaging.

[73]  Sylvain Baillet,et al.  Influence of skull anisotropy for the forward and inverse problem in EEG: Simulation studies using FEM on realistic head models , 1998, Human brain mapping.

[74]  Bing Li,et al.  Use of Electrical Impedance Tomography to Monitor Regional Cerebral Edema during Clinical Dehydration Treatment , 2014, PloS one.

[75]  D S Holder,et al.  Detection of cerebral ischaemia in the anaesthetised rat by impedance measurement with scalp electrodes: implications for non-invasive imaging of stroke by electrical impedance tomography. , 1992, Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics.

[76]  D. Djajaputra Electrical Impedance Tomography: Methods, History and Applications , 2005 .

[77]  M. Schweiger,et al.  Gauss–Newton method for image reconstruction in diffuse optical tomography , 2005, Physics in medicine and biology.

[78]  J. Lamberti,et al.  Concurrent assessment of acoustic startle and auditory P50 evoked potential measures of sensory inhibition , 1993, Biological Psychiatry.

[79]  Allen D. Malony,et al.  Anatomically Constrained Conductivity Estimation of the Human Head Tissues in Vivo: Computational Procedure and Preliminary Experiments , 2007 .

[80]  D S Holder Electrical impedance tomography with cortical or scalp electrodes during global cerebral ischaemia in the anaesthetised rat. , 1992, Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics.

[81]  Auditory evoked potentials. , 2004, Minerva anestesiologica.

[82]  P. Nicholson,et al.  Specific impedance of cerebral white matter. , 1965, Experimental neurology.

[83]  S. Butler,et al.  The clinical role of evoked potentials , 2005, Journal of Neurology, Neurosurgery & Psychiatry.

[84]  Simon R Arridge,et al.  Comparison of methods for optimal choice of the regularization parameter for linear electrical impedance tomography of brain function , 2008, Physiological measurement.

[85]  J. Schadé,et al.  Changes in the electrical conductivity of cerebral cortex during seizure activity. , 1962, Experimental neurology.

[86]  David S. Holder,et al.  A method for recording resistance changes non-invasively during neuronal depolarization with a view to imaging brain activity with electrical impedance tomography , 2009, Journal of Neuroscience Methods.

[87]  Xavier Tricoche,et al.  Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: A simulation and visualization study using high-resolution finite element modeling , 2006, NeuroImage.

[88]  K. Foster,et al.  Dielectric Permittivity and Electrical Conductivity of Fluid Saturated Bone , 1983, IEEE Transactions on Biomedical Engineering.

[89]  D S Holder,et al.  A modelling study to inform specification and optimal electrode placement for imaging of neuronal depolarization during visual evoked responses by electrical and magnetic detection impedance tomography , 2009, Physiological measurement.

[90]  E. Somersalo,et al.  Statistical inverse problems: discretization, model reduction and inverse crimes , 2007 .

[91]  Richard H. Bayford,et al.  Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method , 2003, NeuroImage.

[92]  David Atkinson,et al.  Use of anisotropic modelling in electrical impedance tomography; Description of method and preliminary assessment of utility in imaging brain function in the adult human head , 2008, NeuroImage.

[93]  Fetsje Bijma,et al.  In vivo measurement of the brain and skull resistivities using an EIT-based method and realistic models for the head , 2003, IEEE Transactions on Biomedical Engineering.

[94]  W. Sutherling,et al.  Conductivities of Three-Layer Human Skull , 2004, Brain Topography.

[95]  Jens Haueisen,et al.  Use of a priori information in estimating tissue resistivities--application to human data in vivo. , 2004, Physiological measurement.

[96]  J. D. Pickard,et al.  Pressure-autoregulation, CO2 reactivity and asymmetry of haemodynamic parameters in patients with carotid artery stenotic disease. A clinical appraisal , 2003, Acta Neurochirurgica.

[97]  D S Holder,et al.  Some possible neurological applications of applied potential tomography. , 1988, Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics.

[98]  P. V. van Rijen,et al.  Measurement of the Conductivity of Skull, Temporarily Removed During Epilepsy Surgery , 2004, Brain Topography.

[99]  D S Holder,et al.  Impedance changes during evoked nervous activity in human subjects: implications for the application of applied potential tomography (APT) to imaging neuronal discharge. , 1989, Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics.

[100]  R. Näätänen,et al.  The mismatch negativity (MMN): towards the optimal paradigm , 2004, Clinical Neurophysiology.

[101]  Richard H. Bayford,et al.  A cable theory based biophysical model of resistance change in crab peripheral nerve and human cerebral cortex during neuronal depolarisation: implications for electrical impedance tomography of fast neural activity in the brain , 2012, Medical & Biological Engineering & Computing.

[102]  Ville Kolehmainen,et al.  Approximation errors and model reduction in three-dimensional diffuse optical tomography. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[103]  Mårten Gulliksson,et al.  Optimization tools for solving nonlinear ill-posed problems , 2001 .

[104]  Kirill Y Aristovich,et al.  A method for reconstructing tomographic images of evoked neural activity with electrical impedance tomography using intracranial planar arrays , 2014, Physiological measurement.

[105]  Allen D. Malony,et al.  Use of Parallel Simulated Annealing for Computational Modeling of Human Head Conductivity , 2007, International Conference on Computational Science.

[106]  R H Bayford,et al.  Improvement of the positional accuracy of EIT images of the head using a Lagrange multiplier reconstruction algorithm with diametric excitation. , 1996, Physiological measurement.

[107]  Gang Wang,et al.  The relationship between conductivity uncertainties and EEG source localization accuracy , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[108]  R H Bayford,et al.  Design and performance of the UCLH mark 1b 64 channel electrical impedance tomography (EIT) system, optimized for imaging brain function. , 2002, Physiological measurement.

[109]  Wuqiang Yang,et al.  A hybrid reconstruction algorithm for electrical impedance tomography , 2007 .

[110]  S. Saha,et al.  Electric and dielectric properties of wet human cortical bone as a function of frequency , 1992, IEEE Transactions on Biomedical Engineering.

[111]  H Griffiths A phantom for electrical impedance tomography. , 1988, Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics.

[112]  Richard H. Bayford,et al.  Three-Dimensional Electrical Impedance Tomography of Human Brain Activity , 2001, NeuroImage.

[113]  Rebecca Louise Robinson Experimental study of electrophysiology using the fEITER system , 2011 .

[114]  D S Holder,et al.  Analysis of resting noise characteristics of three EIT systems in order to compare suitability for time difference imaging with scalp electrodes during epileptic seizures , 2007, Physiological measurement.

[115]  P. Wright,et al.  A study of composite electrode-tissue impedance , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[116]  S. K. Law,et al.  Thickness and resistivity variations over the upper surface of the human skull , 2005, Brain Topography.

[117]  David R. Wozny,et al.  The electrical conductivity of human cerebrospinal fluid at body temperature , 1997, IEEE Transactions on Biomedical Engineering.

[118]  Y Ultchin,et al.  Indirect calculation of breast tissue impedance values. , 2002, Physiological measurement.

[119]  R P Patterson,et al.  Variability in the cardiac EIT image as a function of electrode position, lung volume and body position. , 2001, Physiological measurement.

[120]  Manuchehr Soleimani,et al.  Numerical modelling errors in electrical impedance tomography , 2007, Physiological measurement.

[121]  C D Binnie,et al.  Factors limiting the application of electrical impedance tomography for identification of regional conductivity changes using scalp electrodes during epileptic seizures in humans , 2006, Physiological measurement.

[122]  Tatsuma Yamamoto,et al.  Electrical properties of the epidermal stratum corneum , 2006, Medical and biological engineering.

[123]  M. Bodó,et al.  Assessment of cerebral blood flow autoregulation (CBF AR) with rheoencephalography (REG): studies in animals , 2013 .

[124]  David S. Holder,et al.  Parallel, multi frequency EIT measurement, suitable for recording impedance changes during epilepsy , 2015 .

[125]  R H Smallwood,et al.  Mk3.5: a modular, multi-frequency successor to the Mk3a EIS/EIT system. , 2001, Physiological measurement.

[126]  E. Somersalo,et al.  Approximation errors and model reduction with an application in optical diffusion tomography , 2006 .

[127]  S. Goncalves,et al.  In vivo measurement of skull and brain resistivities with EIT based method and analysis of SEF/SEP data , 2001, 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[128]  Andy Adler,et al.  Addressing the computational cost of large EIT solutions , 2012, Physiological measurement.

[129]  Jari P. Kaipio,et al.  Compensation of Modelling Errors Due to Unknown Domain Boundary in Electrical Impedance Tomography , 2011, IEEE Transactions on Medical Imaging.

[130]  Dong Liu,et al.  A nonlinear approach to difference imaging in EIT; assessment of the robustness in the presence of modelling errors , 2015 .

[131]  Eung Je Woo,et al.  Multi-frequency EIT system with radially symmetric architecture: KHU Mark1 , 2007, Physiological measurement.

[132]  W. R. Adey,et al.  Impedance Changes during Epileptic Seizures , 1966, Epilepsia.

[133]  Ryan Halter,et al.  Excitation patterns in three-dimensional electrical impedance tomography , 2005, Physiological measurement.

[134]  M. N. Anas,et al.  Development of a low cost precision blood resistivity measurement device based on Thompson Lampard theorem , 2012, 2012 International Conference on Biomedical Engineering (ICoBE).

[135]  Moritz Dannhauer,et al.  Modeling of the human skull in EEG source analysis , 2011, Human brain mapping.

[136]  Sverre Grimnes,et al.  Facts and Myths about Electrical Measurement of Stratum corneum Hydration State , 2001, Dermatology.

[137]  Masahiro Takei,et al.  Application of electrical resistance tomography for thrombus visualization in blood , 2015 .

[138]  R H Smallwood,et al.  Determination of the relationship between the pH and conductivity of gastric juice , 1996, Physiological measurement.

[139]  Karl J. Friston,et al.  The mismatch negativity: A review of underlying mechanisms , 2009, Clinical Neurophysiology.

[140]  N. Polydorides,et al.  Inequality Constrained EIT Modelling and Inversion , 2014 .

[141]  R H Bayford,et al.  Two-dimensional finite element modelling of the neonatal head. , 2000, Physiological measurement.

[142]  K R Foster,et al.  Whole-body impedance--what does it measure? , 1996, The American journal of clinical nutrition.

[143]  H McCann,et al.  3D simulation of EIT for monitoring impedance variations within the human head. , 2000, Physiological measurement.

[144]  D. S. Holder,et al.  Electrical impedance tomography (EIT) of brain function , 2005, Brain Topography.

[145]  E. Somersalo,et al.  Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .

[146]  M. Clerc,et al.  In vivo Conductivity Estimation with Symmetric Boundary Elements , 2005 .

[147]  Keith D. Paulsen,et al.  Using voltage sources as current drivers for electrical impedance tomography , 2002 .

[148]  Paul Wright,et al.  fEITER ? a new EIT instrument for functional brain imaging , 2010 .

[149]  G. Christopher Stecker,et al.  Human evoked cortical activity to signal-to-noise ratio and absolute signal level , 2009, Hearing Research.

[150]  D S Holder,et al.  A review of errors in multi-frequency EIT instrumentation , 2007, Physiological measurement.

[151]  Ryan J. Halter,et al.  A Novel Regularization Technique for Microendoscopic Electrical Impedance Tomography , 2016, IEEE Transactions on Medical Imaging.

[152]  Andy Adler,et al.  Electrical impedance tomography: regularized imaging and contrast detection , 1996, IEEE Trans. Medical Imaging.

[153]  J. B. Ranck,et al.  Specific impedance of cerebral cortex during spreading depression, and an analysis of neuronal, neuroglial, and interstitial contributions , 1964 .

[154]  J. Haueisen,et al.  Influence of head models on EEG simulations and inverse source localizations , 2006, Biomedical engineering online.

[155]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[156]  Arjun G. Yodh,et al.  Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement , 2014, NeuroImage.

[157]  Allen D. Malony,et al.  Computational Modeling of Human Head Conductivity , 2005, International Conference on Computational Science.

[158]  William R B Lionheart,et al.  Uses and abuses of EIDORS: an extensible software base for EIT , 2006, Physiological measurement.

[159]  H. P. Schwan,et al.  Electrical properties of blood and its constitutents: Alternating current spectroscopy , 1983, Blut: Zeitschrift für die Gesamte Blutforschung.

[160]  C. Giller A bedside test for cerebral autoregulation using transcranial Doppler ultrasound , 1991, Acta Neurochirurgica.

[161]  D. A. Driscoll,et al.  Current Distribution in the Brain From Surface Electrodes , 1968, Anesthesia and analgesia.

[162]  Kevin Graham Boone,et al.  The possible use of applied potential tomography for imaging action potentials in the brain , 1995 .

[163]  R H Bayford,et al.  Electrical impedance tomography of human brain activity with a two-dimensional ring of scalp electrodes , 2001, Physiological measurement.

[164]  D C Barber,et al.  Possibilities and problems of real-time imaging of tissue resistivity. , 1988, Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics.

[165]  R. Freeman,et al.  Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity , 2007, Nature Neuroscience.

[166]  W. Drongelen,et al.  Estimation of in vivo human brain-to-skull conductivity ratio from simultaneous extra- and intra-cranial electrical potential recordings , 2005, Clinical Neurophysiology.

[167]  Lior Horesh,et al.  Some novel approaches in modelling and image reconstruction for multi-frequency Electrical Impedance Tomography of the human brain , 2006 .

[168]  St Ahsan,et al.  Ensuring safe EIT operation on human subjects , 2008 .

[169]  D S Holder,et al.  Detection of cortical spreading depression in the anaesthetised rat by impedance measurement with scalp electrodes: implications for non-invasive imaging of the brain with electrical impedance tomography. , 1992, Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics.

[170]  Eung Je Woo,et al.  A fully parallel multi-frequency EIT system with flexible electrode configuration: KHU Mark2 , 2011, Physiological measurement.

[171]  J. L. Davidson,et al.  Predicted EIT current densities in the brain using a 3D anatomically realistic model of the head , 2007 .

[172]  N. Vaisman,et al.  Gastric Emptying in Patients with Type I Diabetes Mellitus , 1999, Annals of the New York Academy of Sciences.

[173]  R H Bayford,et al.  A multi-shell algorithm to reconstruct EIT images of brain function. , 2002, Physiological measurement.

[174]  Andy Adler,et al.  Adjacent stimulation and measurement patterns considered harmful , 2011, Physiological measurement.

[175]  D S Holder,et al.  Design considerations and performance of a prototype system for imaging neuronal depolarization in the brain using 'direct current' electrical resistance tomography. , 1995, Physiological measurement.

[176]  J. Borges,et al.  Real‐time ventilation and perfusion distributions by electrical impedance tomography during one‐lung ventilation with capnothorax , 2015, Acta anaesthesiologica Scandinavica.

[177]  B. Brown,et al.  Applied potential tomography. , 1989, Journal of the British Interplanetary Society.

[178]  Juan J. Pérez,et al.  Influence of the scalp thickness on the intracranial contribution to rheoencephalography. , 2004, Physics in medicine and biology.

[179]  Hiroshi Kanai,et al.  Electrical Characteristics of Flowing Blood , 1979, IEEE Transactions on Biomedical Engineering.

[180]  B. Blad,et al.  Impedance spectra of tumour tissue in comparison with normal tissue; a possible clinical application for electrical impedance tomography. , 1996, Physiological measurement.

[181]  David Isaacson,et al.  Electrical Impedance Tomography , 2002, IEEE Trans. Medical Imaging.

[182]  S. Nash,et al.  Linear and Nonlinear Programming , 1987 .

[183]  Jari P. Kaipio,et al.  Compensation of errors due to incorrect model geometry in electrical impedance tomography , 2010 .

[184]  W. van Drongelen,et al.  Estimation of in vivo brain-to-skull conductivity ratio in humans. , 2006, Applied physics letters.

[185]  P F Renshaw,et al.  Influence of baseline hematocrit and hemodilution on BOLD fMRI activation. , 2001, Magnetic resonance imaging.

[186]  Thom F. Oostendorp,et al.  The conductivity of the human skull: results of in vivo and in vitro measurements , 2000, IEEE Transactions on Biomedical Engineering.

[187]  David S. Holder,et al.  Clinical and physiological applications of electrical impedance tomography , 1993 .

[188]  M. Bodó,et al.  Changes in the intracranial rheoencephalogram at lower limit of cerebral blood flow autoregulation , 2005, Physiological measurement.

[189]  K. R. Visser,et al.  Observations on blood flow related electrical impedance changes in rigid tubes , 1976, Pflügers Archiv.

[190]  R H Bayford,et al.  Validation of a 3D reconstruction algorithm for EIT of human brain function in a realistic head-shaped tank. , 2001, Physiological measurement.

[191]  Xicai Yue,et al.  FPGA design and implementation for EIT data acquisition. , 2008, Physiological measurement.

[192]  Rebecca L. Robinson,et al.  A portable instrument for high-speed brain function imaging: FEITER , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[193]  Lior Horesh,et al.  Non invasive imaging of synchronized neuronal activity using low frequency electrical impedance tomography , 2005 .

[194]  Alexander Hartov,et al.  Intracranial Electrical Impedance Tomography: A Method of Continuous Monitoring in an Animal Model of Head Trauma , 2013, Anesthesia and analgesia.

[195]  K. Hossmann,et al.  Cortical steady potential, impedance and excitability changes during and after total ischemia of cat brain. , 1971, Experimental neurology.

[196]  J. Kaipio,et al.  The Bayesian approximation error approach for electrical impedance tomography—experimental results , 2007 .

[197]  V. Pascalis,et al.  Effects of personality trait emotionality on acoustic startle response and prepulse inhibition including N100 and P200 event-related potential , 2013, Clinical Neurophysiology.

[198]  R Galambos,et al.  Rapid resistance shifts in cat cortex during click-evoked responses. , 1968, Journal of neurophysiology.

[199]  H. Pfützner,et al.  Dielectric analysis of blood by means of a raster-electrode technique , 1984, Medical and Biological Engineering and Computing.

[200]  Tae-Seong Kim,et al.  Influence of anisotropic conductivity in the skull and white matter on transcranial direct current stimulation via an anatomically realistic finite element head model , 2012, Physics in medicine and biology.

[201]  Lutz Jäncke,et al.  Brain size and grey matter volume in the healthy human brain , 2002, Neuroreport.

[202]  Ron Kikinis,et al.  MRI-informed functional EIT lung imaging , 2012 .

[203]  Bin He,et al.  Estimation of electrical conductivity distribution within the human head from magnetic flux density measurement. , 2005, Physics in medicine and biology.

[204]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[205]  Keith D. Paulsen,et al.  A Broadband High-Frequency Electrical Impedance Tomography System for Breast Imaging , 2008, IEEE Transactions on Biomedical Engineering.

[206]  F. Fu,et al.  Real-Time Imaging and Detection of Intracranial Haemorrhage by Electrical Impedance Tomography in a Piglet Model , 2010, The Journal of international medical research.

[207]  W. Lionheart,et al.  Electrical impedance tomography for high speed chest imaging , 1997 .