The Riemann hypothesis illuminated by the Newton flow of ζ

We analyze the Newton flow of the Riemann zeta function ζ and rederive in an elementary way the Riemann–von Mangoldt estimate of the number of non-trivial zeros below a given imaginary part. The representation of the flow on the Riemann sphere highlights the importance of the North pole as the starting and turning point of the separatrices, that is of the continental divides of the Newton flow. We argue that the resulting patterns may lead to deeper insight into the Riemann hypothesis. For this purpose we also compare and contrast the Newton flow of ζ with that of a function which in many ways is similar to ζ, but violates the Riemann hypothesis.

[1]  A. Speiser Geometrisches zur Riemannschen Zetafunktion , 1935 .

[2]  Marlan O. Scully,et al.  Condensation of N Bosons and the Laser Phase Transition Analogy , 1999 .

[3]  C. Feiler Quantum physics and number theory connected by the Riemann zeta function , 2014 .

[4]  G. Milburn,et al.  The quantum Mellin transform , 2006, quant-ph/0702107.

[5]  Kevin A. Broughan,et al.  Corrigendum to "The holomorphic flow of the Riemann zeta function" , 2007, Math. Comput..

[6]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[7]  M. Scully,et al.  Condensation of N bosons. III. Analytical results for all higher moments of condensate fluctuations in interacting and ideal dilute Bose gases via the canonical ensemble quasiparticle formulation , 2000 .

[8]  Stig Stenholm,et al.  The Stefan–Boltzmann law: two classical laws give a quantum one , 2015 .

[9]  J. Neuberger Steepest descent and differential equations , 1985 .

[10]  H. Weidenmuller,et al.  Random Matrices and Chaos in Nuclear Physics , 2008, 0807.1070.

[11]  Wolfgang P. Schleich,et al.  Entanglement and analytical continuation: an intimate relation told by the Riemann zeta function , 2013 .

[12]  Wojciech H. Zurek,et al.  Quantum Darwinism, classical reality, and the randomness of quantum jumps , 2014, 1412.5206.

[13]  Kevin A. Broughan,et al.  The holomorphic flow of the Riemann zeta function , 2003, Math. Comput..

[14]  D. R. Heath-Brown,et al.  The Theory of the Riemann Zeta-Function , 1987 .

[15]  M. S. Zubairy,et al.  Condensation of N bosons. II. Nonequilibrium analysis of an ideal Bose gas and the laser phase-transition analogy , 2000 .

[16]  W. Zurek Quantum Darwinism , 2009, 0903.5082.

[17]  J. Keating,et al.  A new asymptotic representation for ζ(½ + it) and quantum spectral determinants , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[18]  Michael V. Berry,et al.  The Riemann Zeros and Eigenvalue Asymptotics , 1999, SIAM Rev..

[19]  B. V. D. Pol An electro-mechanical investigation of the Riemann zeta function in the critical strip , 1947 .

[20]  Martin Holthaus,et al.  Factorising numbers with a Bose–Einstein condensate , 2004 .

[21]  N. Snaith,et al.  Random Matrix Theory and ζ(1/2+it) , 2000 .

[22]  X-Ray of Riemann zeta-function , 2003, math/0309433.

[23]  David A. W. Hutchinson,et al.  Colloquium: Physics of the Riemann hypothesis , 2011, 1101.3116.

[24]  J. Neuberger Continuous newton’s method for polynomials , 1999 .

[25]  Germán Sierra,et al.  H = xp model revisited and the Riemann zeros. , 2011, Physical review letters.

[26]  Helmut Maier,et al.  Newton flow of the Riemann zeta function: separatrices control the appearance of zeros , 2014 .