Error analysis of a high-order compact ADI method for two-dimensional fractional convection-subdiffusion equations

This paper is concerned with numerical methods for a class of two-dimensional fractional convection-subdiffusion equations with a time Caputo fractional derivative of order $$\alpha (0<\alpha <1)$$α(0<α<1). We first transform the original equation into a special and equivalent form, which is then discretized by a fourth-order compact finite difference approximation in the spatial directions and by an alternating direction implicit (ADI) approximation in the temporal direction. The resulting compact ADI scheme is uniquely solvable and unconditionally stable. The optimal error estimates in the weighted $$L^{\infty }$$L∞, $$H^{1}$$H1 and $$L^{2}$$L2 norms are obtained, and show that the compact ADI method has the temporal accuracy of order $$\min \{1+\alpha ,2-\alpha \}$$min{1+α,2-α} and the fourth-order spatial accuracy. Applications using three model problems give numerical results that demonstrate the accuracy and the effectiveness of this new method.

[1]  Fawang Liu,et al.  An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation , 2010 .

[2]  H. Keller,et al.  Analysis of Numerical Methods , 1969 .

[3]  Fawang Liu,et al.  Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation , 2008, Appl. Math. Comput..

[4]  Fawang Liu,et al.  Novel numerical methods for time-space fractional reaction diffusion equations in two dimensions , 2011 .

[5]  I. Podlubny Fractional differential equations , 1998 .

[6]  Nicholas Hale,et al.  An Efficient Implicit FEM Scheme for Fractional-in-Space Reaction-Diffusion Equations , 2012, SIAM J. Sci. Comput..

[7]  Hermann Brunner,et al.  Numerical simulations of 2D fractional subdiffusion problems , 2010, J. Comput. Phys..

[8]  A. Samarskii The Theory of Difference Schemes , 2001 .

[9]  W. Schneider,et al.  Fractional diffusion and wave equations , 1989 .

[10]  Mingrong Cui,et al.  Compact alternating direction implicit method for two-dimensional time fractional diffusion equation , 2012, J. Comput. Phys..

[11]  Fawang Liu,et al.  Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term , 2009, J. Comput. Appl. Math..

[12]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[13]  Yangquan Chen,et al.  Computers and Mathematics with Applications Numerical Approximation of Nonlinear Fractional Differential Equations with Subdiffusion and Superdiffusion , 2022 .

[14]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[15]  Fawang Liu,et al.  New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..

[16]  Changpin Li,et al.  A note on the finite element method for the space-fractional advection diffusion equation , 2010, Comput. Math. Appl..

[17]  Mostafa Abbaszadeh,et al.  Compact finite difference scheme for the solution of time fractional advection-dispersion equation , 2012, Numerical Algorithms.

[18]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[19]  Fawang Liu,et al.  Finite Difference Approximation for Two-Dimensional Time Fractional Diffusion Equation , 2007 .

[20]  Fawang Liu,et al.  Numerical Schemes with High Spatial Accuracy for a Variable-Order Anomalous Subdiffusion Equation , 2010, SIAM J. Sci. Comput..

[21]  Santos B. Yuste,et al.  On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.

[22]  I. Sokolov,et al.  Anomalous transport : foundations and applications , 2008 .

[23]  Fawang Liu,et al.  Novel Numerical Methods for Solving the Time-Space Fractional Diffusion Equation in Two Dimensions , 2011, SIAM J. Sci. Comput..

[24]  Bruce J. West,et al.  Fractional Diffusion Equation , 1999 .

[25]  Ya-Nan Zhang,et al.  Error Estimates of Crank-Nicolson-Type Difference Schemes for the Subdiffusion Equation , 2011, SIAM J. Numer. Anal..

[26]  W. Wyss The fractional diffusion equation , 1986 .

[27]  Mingrong Cui,et al.  Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..

[28]  Xuan Zhao,et al.  Compact Crank–Nicolson Schemes for a Class of Fractional Cattaneo Equation in Inhomogeneous Medium , 2014, Journal of Scientific Computing.

[29]  Solomon,et al.  Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. , 1993, Physical review letters.

[30]  Zhi-Zhong Sun,et al.  Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation , 2011, J. Comput. Phys..

[31]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[32]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[33]  Zhi-Zhong Sun,et al.  Error Analysis of a Compact ADI Scheme for the 2D Fractional Subdiffusion Equation , 2014, J. Sci. Comput..

[34]  M. T. Cicero FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .

[35]  Fawang Liu,et al.  Finite difference approximations for the fractional Fokker–Planck equation , 2009 .

[36]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[37]  Qinwu Xu,et al.  Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient , 2014 .

[38]  ZhaoXuan,et al.  Second-order approximations for variable order fractional derivatives , 2015 .

[39]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[40]  Fawang Liu,et al.  A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..

[41]  Mingrong Cui,et al.  A high-order compact exponential scheme for the fractional convection-diffusion equation , 2014, J. Comput. Appl. Math..

[42]  Fawang Liu,et al.  An implicit RBF meshless approach for time fractional diffusion equations , 2011 .

[43]  Santos B. Yuste,et al.  Weighted average finite difference methods for fractional diffusion equations , 2004, J. Comput. Phys..

[44]  K. Burrage,et al.  Fourier spectral methods for fractional-in-space reaction-diffusion equations , 2014 .

[45]  Fawang Liu,et al.  Stability and convergence of an implicit numerical method for the non-linear fractional reaction–subdiffusion process , 2009 .

[46]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[47]  Zhi-Zhong Sun,et al.  A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..

[48]  R. Gorenflo,et al.  Time Fractional Diffusion: A Discrete Random Walk Approach , 2002 .

[49]  Fawang Liu,et al.  Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation , 2010, Numerical Algorithms.

[50]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[51]  Zhi-zhong Sun,et al.  Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations , 2010 .

[52]  Mingrong Cui Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation , 2012, Numerical Algorithms.

[53]  Yasuhiro Fujita,et al.  INTEGRODIFFERENTIAL EQUATION WHICH INTERPOLATES THE HEAT EQUATION AND THE WAVE EQUATION I(Martingales and Related Topics) , 1989 .

[54]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[55]  Xuan Zhao,et al.  Second-order approximations for variable order fractional derivatives: Algorithms and applications , 2015, J. Comput. Phys..

[56]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .