Error analysis of a high-order compact ADI method for two-dimensional fractional convection-subdiffusion equations
暂无分享,去创建一个
[1] Fawang Liu,et al. An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation , 2010 .
[2] H. Keller,et al. Analysis of Numerical Methods , 1969 .
[3] Fawang Liu,et al. Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation , 2008, Appl. Math. Comput..
[4] Fawang Liu,et al. Novel numerical methods for time-space fractional reaction diffusion equations in two dimensions , 2011 .
[5] I. Podlubny. Fractional differential equations , 1998 .
[6] Nicholas Hale,et al. An Efficient Implicit FEM Scheme for Fractional-in-Space Reaction-Diffusion Equations , 2012, SIAM J. Sci. Comput..
[7] Hermann Brunner,et al. Numerical simulations of 2D fractional subdiffusion problems , 2010, J. Comput. Phys..
[8] A. Samarskii. The Theory of Difference Schemes , 2001 .
[9] W. Schneider,et al. Fractional diffusion and wave equations , 1989 .
[10] Mingrong Cui,et al. Compact alternating direction implicit method for two-dimensional time fractional diffusion equation , 2012, J. Comput. Phys..
[11] Fawang Liu,et al. Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term , 2009, J. Comput. Appl. Math..
[12] B. Henry,et al. The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .
[13] Yangquan Chen,et al. Computers and Mathematics with Applications Numerical Approximation of Nonlinear Fractional Differential Equations with Subdiffusion and Superdiffusion , 2022 .
[14] Weihua Deng,et al. Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..
[15] Fawang Liu,et al. New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..
[16] Changpin Li,et al. A note on the finite element method for the space-fractional advection diffusion equation , 2010, Comput. Math. Appl..
[17] Mostafa Abbaszadeh,et al. Compact finite difference scheme for the solution of time fractional advection-dispersion equation , 2012, Numerical Algorithms.
[18] Santos B. Yuste,et al. An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..
[19] Fawang Liu,et al. Finite Difference Approximation for Two-Dimensional Time Fractional Diffusion Equation , 2007 .
[20] Fawang Liu,et al. Numerical Schemes with High Spatial Accuracy for a Variable-Order Anomalous Subdiffusion Equation , 2010, SIAM J. Sci. Comput..
[21] Santos B. Yuste,et al. On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.
[22] I. Sokolov,et al. Anomalous transport : foundations and applications , 2008 .
[23] Fawang Liu,et al. Novel Numerical Methods for Solving the Time-Space Fractional Diffusion Equation in Two Dimensions , 2011, SIAM J. Sci. Comput..
[24] Bruce J. West,et al. Fractional Diffusion Equation , 1999 .
[25] Ya-Nan Zhang,et al. Error Estimates of Crank-Nicolson-Type Difference Schemes for the Subdiffusion Equation , 2011, SIAM J. Numer. Anal..
[26] W. Wyss. The fractional diffusion equation , 1986 .
[27] Mingrong Cui,et al. Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..
[28] Xuan Zhao,et al. Compact Crank–Nicolson Schemes for a Class of Fractional Cattaneo Equation in Inhomogeneous Medium , 2014, Journal of Scientific Computing.
[29] Solomon,et al. Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. , 1993, Physical review letters.
[30] Zhi-Zhong Sun,et al. Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation , 2011, J. Comput. Phys..
[31] Chuanju Xu,et al. Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..
[32] Xianjuan Li,et al. A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..
[33] Zhi-Zhong Sun,et al. Error Analysis of a Compact ADI Scheme for the 2D Fractional Subdiffusion Equation , 2014, J. Sci. Comput..
[34] M. T. Cicero. FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .
[35] Fawang Liu,et al. Finite difference approximations for the fractional Fokker–Planck equation , 2009 .
[36] R. Hilfer. Applications Of Fractional Calculus In Physics , 2000 .
[37] Qinwu Xu,et al. Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient , 2014 .
[38] ZhaoXuan,et al. Second-order approximations for variable order fractional derivatives , 2015 .
[39] Zhi‐zhong Sun,et al. A fully discrete difference scheme for a diffusion-wave system , 2006 .
[40] Fawang Liu,et al. A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..
[41] Mingrong Cui,et al. A high-order compact exponential scheme for the fractional convection-diffusion equation , 2014, J. Comput. Appl. Math..
[42] Fawang Liu,et al. An implicit RBF meshless approach for time fractional diffusion equations , 2011 .
[43] Santos B. Yuste,et al. Weighted average finite difference methods for fractional diffusion equations , 2004, J. Comput. Phys..
[44] K. Burrage,et al. Fourier spectral methods for fractional-in-space reaction-diffusion equations , 2014 .
[45] Fawang Liu,et al. Stability and convergence of an implicit numerical method for the non-linear fractional reaction–subdiffusion process , 2009 .
[46] J. Bouchaud,et al. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .
[47] Zhi-Zhong Sun,et al. A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..
[48] R. Gorenflo,et al. Time Fractional Diffusion: A Discrete Random Walk Approach , 2002 .
[49] Fawang Liu,et al. Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation , 2010, Numerical Algorithms.
[50] J. Klafter,et al. The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .
[51] Zhi-zhong Sun,et al. Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations , 2010 .
[52] Mingrong Cui. Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation , 2012, Numerical Algorithms.
[53] Yasuhiro Fujita,et al. INTEGRODIFFERENTIAL EQUATION WHICH INTERPOLATES THE HEAT EQUATION AND THE WAVE EQUATION I(Martingales and Related Topics) , 1989 .
[54] J. Klafter,et al. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .
[55] Xuan Zhao,et al. Second-order approximations for variable order fractional derivatives: Algorithms and applications , 2015, J. Comput. Phys..
[56] K. Miller,et al. An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .