Isovalent multi-component doping strategy for stabilizing cubic-Li7La3Zr2O12 with excellent Li mobility

[1]  Rajan Kumar,et al.  Current trends, challenges, and prospects in material advances for improving the overall safety of lithium-ion battery pack , 2023, Chemical Engineering Journal.

[2]  G. Ceder,et al.  High-entropy mechanism to boost ionic conductivity , 2022, Science.

[3]  C. Jung,et al.  Unlocking the hidden chemical space in cubic-phase garnet solid electrolyte for efficient quasi-all-solid-state lithium batteries , 2022, Nature communications.

[4]  Shifei Kang,et al.  Prospects of LLZO type solid electrolyte: from material design to battery application , 2022, Chemical Engineering Journal.

[5]  L. Luo,et al.  Probing the Phase Transition during the Formation of Lithium Lanthanum Zirconium Oxide Solid Electrolyte. , 2022, ACS applied materials & interfaces.

[6]  K. Kang,et al.  High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility , 2022, Nature Communications.

[7]  M. Zhuravleva,et al.  Crystal chemistry of rare-earth containing garnets: Prospects for high configurational entropy , 2022, Journal of Solid State Chemistry.

[8]  P. Kim,et al.  A Roadmap of Battery Separator Development: Past and Future , 2021, Current Opinion in Electrochemistry.

[9]  P. Slater,et al.  Assessing the importance of cation size in the tetragonal-cubic phase transition in lithium garnet electrolytes. , 2021, Chemistry.

[10]  Li Lu,et al.  All‐Solid‐State Thin Film μ‐Batteries for Microelectronics , 2021, Advanced science.

[11]  Yanchun Zhou,et al.  High-entropy ceramics: Present status, challenges, and a look forward , 2021, Journal of Advanced Ceramics.

[12]  Bingqiang Cao,et al.  Research progress of gadolinium aluminum garnet based optical materials , 2021 .

[13]  G. Ceder,et al.  Promises and Challenges of Next-Generation "Beyond Li-ion" Batteries for Electric Vehicles and Grid Decarbonization. , 2020, Chemical reviews.

[14]  Li Lu,et al.  Microstructural and Electrochemical Properties of Al- and Ga-Doped Li7La3Zr2O12 Garnet Solid Electrolytes , 2020 .

[15]  Hong‐Jie Peng,et al.  Garnet Solid Electrolyte for Advanced All‐Solid‐State Li Batteries , 2020, Advanced Energy Materials.

[16]  Adelaide M. Nolan,et al.  Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries. , 2020, Chemical reviews.

[17]  K. Zaghib,et al.  Discovering the Influence of Lithium Loss on Garnet Li7La3Zr2O12 Electrolyte Phase Stability , 2020 .

[18]  S. Curtarolo,et al.  High-entropy ceramics , 2020, Nature Reviews Materials.

[19]  P. Slater,et al.  Combined Experimental and Computational Study of Ce-Doped La3Zr2Li7O12 Garnet Solid-State Electrolyte , 2019, Chemistry of Materials.

[20]  Vei Wang,et al.  VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code , 2019, Comput. Phys. Commun..

[21]  H. Hahn,et al.  On the homogeneity of high entropy oxides: An investigation at the atomic scale , 2019, Scripta Materialia.

[22]  P. Slater,et al.  Structure and Lithium-Ion Dynamics in Fluoride-Doped Cubic Li7La3Zr2O12 (LLZO) Garnet for Li Solid-State Battery Applications , 2018, The Journal of Physical Chemistry C.

[23]  Tyler J. Harrington,et al.  High-entropy fluorite oxides , 2018, Journal of the European Ceramic Society.

[24]  Zhifeng Huang,et al.  Origin of the Phase Transition in Lithium Garnets , 2018 .

[25]  C. Kübel,et al.  Multicomponent equiatomic rare earth oxides , 2017 .

[26]  D. Murata,et al.  Near-infrared long persistent luminescence of Er3+ in garnet for the third bio-imaging window , 2016 .

[27]  Jichang Liu,et al.  Ruthenium doped cubic-garnet structured solid electrolyte Li7La3Zr2−xRuxO12 , 2016 .

[28]  M. Wilkening,et al.  Crystal Structure of Garnet-Related Li-Ion Conductor Li7–3xGaxLa3Zr2O12: Fast Li-Ion Conduction Caused by a Different Cubic Modification? , 2016, Chemistry of materials : a publication of the American Chemical Society.

[29]  Kwang Man Kim,et al.  Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction , 2015, Scientific Reports.

[30]  W. Richards,et al.  First-Principles Studies on Cation Dopants and Electrolyte|Cathode Interphases for Lithium Garnets , 2015 .

[31]  T. Thompson,et al.  Tetragonal vs. cubic phase stability in Al – free Ta doped Li7La3Zr2O12 (LLZO) , 2014 .

[32]  David L. Olmsted,et al.  Efficient stochastic generation of special quasirandom structures , 2013 .

[33]  Khang Hoang,et al.  Origin of the structural phase transition in Li7La3Zr2O12. , 2012, Physical review letters.

[34]  Martin Fisch,et al.  Crystal chemistry and stability of "Li7La3Zr2O12" garnet: a fast lithium-ion conductor. , 2011, Inorganic chemistry.

[35]  Y. Idemoto,et al.  Crystal Structure of Fast Lithium-ion-conducting Cubic Li7La3Zr2O12 , 2011 .

[36]  Norihito Kijima,et al.  Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure , 2009 .

[37]  G. Ceder,et al.  Factors that affect Li mobility in layered lithium transition metal oxides , 2006 .

[38]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[39]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[40]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[41]  Ferreira,et al.  Special quasirandom structures. , 1990, Physical review letters.

[42]  N. Imanishi,et al.  Stability of Nb-Doped Cubic Li7La3Zr2O12 with Lithium Metal , 2013 .

[43]  H. Hayakawa,et al.  Neutron powder diffraction study of tetragonal Li7La3Hf2O12 with the garnet-related type structure , 2010 .