Best Basis Representations with Prior Statistical Models

Wavelet packets and local trigonometric bases provide an efficient framework and fast algorithms to obtain a “best representation” of a deterministic signal. Applying these deterministic search techniques to stochastic signals may, however, lead to statistically unreliable results. In this chapter, we revisit this problem and introduce prior models on the underlying signal in noise. We propose several techniques to derive the prior parameters and develop a Bayesian-based approach to the best basis problem. As illustrated by applications to signal denoising, this leads to reduced estimation errors while preserving the classical tree search algorithm.

[1]  David L. Donoho,et al.  WaveLab and Reproducible Research , 1995 .

[2]  J. Pesquet,et al.  On the Statistics of Best Bases Criteria , 1995 .

[3]  David Leporini Modelisation statistique et paquets d'ondelettes : application au debruitage de signaux transitoires d'acoustique sous-marine , 1998 .

[4]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[5]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .

[6]  Yves Goussard,et al.  Unsupervised deconvolution of sparse spike trains using stochastic approximation , 1996, IEEE Trans. Signal Process..

[7]  Radford M. Neal A new view of the EM algorithm that justifies incremental and other variants , 1993 .

[8]  Martin Vetterli,et al.  Orthogonal time-varying filter banks and wavelet packets , 1994, IEEE Trans. Signal Process..

[9]  Frédéric Champagnat,et al.  An alternative to standard maximum likelihood for Gaussian mixtures , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[10]  B. Silverman,et al.  Wavelet thresholding via a Bayesian approach , 1998 .

[11]  I. Daubechies,et al.  Wavelets on the Interval and Fast Wavelet Transforms , 1993 .

[12]  Ronald R. Coifman,et al.  Entropy-based algorithms for best basis selection , 1992, IEEE Trans. Inf. Theory.

[13]  R. Coifman,et al.  Local feature extraction and its applications using a library of bases , 1994 .

[14]  James K. Lindsey,et al.  Parametric Statistical Inference , 1996 .

[15]  H. Chipman,et al.  Adaptive Bayesian Wavelet Shrinkage , 1997 .

[16]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[17]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Rong Chen,et al.  Simultaneous wavelet estimation and deconvolution of reflection seismic signals , 1996, IEEE Trans. Geosci. Remote. Sens..

[19]  B. Vidakovic Nonlinear wavelet shrinkage with Bayes rules and Bayes factors , 1998 .

[20]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[21]  Robert D. Nowak,et al.  Wavelet-based statistical signal processing using hidden Markov models , 1998, IEEE Trans. Signal Process..

[22]  M. Clyde,et al.  Multiple shrinkage and subset selection in wavelets , 1998 .

[23]  Stéphane Mallat,et al.  Best basis algorithm for signal enhancement , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[24]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[25]  I. Johnstone,et al.  Ideal denoising in an orthonormal basis chosen from a library of bases , 1994 .

[26]  David Leporini,et al.  Bayesian approach to best basis selection , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.