On planarity and colorability of circulant graphs

For given positive integers n,a"1,...,a"m, we consider the undirected circulant graph G=(V,E) with set of vertices V={0,...,n-1} and set of edges E={[i,j]:i-j=+/-a"k(modn) for some 1==3. For m=2 we completely characterize planarity. It is shown that G is bipartite if and only if there is an l such that 2^l divides a"1,...,a"m,2^l^+^1|n, but 2^l^+^1@?a"j for 1=

[1]  Paul Erdös,et al.  Colouring the real line , 1985, J. Comb. Theory B.

[2]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[3]  Gerard J. Chang,et al.  Integral distance graphs , 1997 .

[4]  Ralph Tindell,et al.  Circulants and their connectivities , 1984, J. Graph Theory.

[5]  Gerhard J. Woeginger,et al.  Hamiltonian cycles in circulant digraphs with two stripes , 1997, Discret. Math..

[6]  Rainer E. Burkard,et al.  Efficiently solvable special cases of bottleneck travelling salesman problems , 1991, Discret. Appl. Math..

[7]  Reinhardt Euler,et al.  Coloring planar Toeplitz graphs and the stable set polytope , 2004, Discret. Math..

[8]  Reinhardt Euler Characterizing bipartite Toeplitz graphs , 2001, Theor. Comput. Sci..

[9]  R. L. Brooks On colouring the nodes of a network , 1941, Mathematical Proceedings of the Cambridge Philosophical Society.