Variational assimilation of Lagrangian data in oceanography

Within the framework of the Global Ocean Data Assimilation Experiment, an increasing amount of data is available. A crucial issue for oceanographers is to exploit at best these observations, in order to improve models, climatology, forecasts, etc. A new type of data is now available: positions of floats drifting at depth in the ocean. Unlike other data, mainly Eulerian, these ones are Lagrangian. I will present methods and results about variational assimilation of Lagrangian data.

[1]  J. Lions,et al.  Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles , 1968 .

[2]  William R. Holland,et al.  The Role of Mesoscale Eddies in the General Circulation of the Ocean—Numerical Experiments Using a Wind-Driven Quasi-Geostrophic Model , 1978 .

[3]  F. L. Dimet,et al.  Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .

[4]  W. Thacker,et al.  Fitting dynamics to data , 1988 .

[5]  Michael Ghil,et al.  Meteorological data assimilation for oceanographers. Part I: Description and theoretical framework☆ , 1989 .

[6]  David L. T. Anderson,et al.  Variational Assimilation of XBT Data. Part 1 , 1990 .

[7]  M. Ghil,et al.  Data assimilation in meteorology and oceanography , 1991 .

[8]  Roger Temam,et al.  On the equations of the large-scale ocean , 1992 .

[9]  Zhi Wang,et al.  The second order adjoint analysis: Theory and applications , 1992 .

[10]  P. Courtier,et al.  A strategy for operational implementation of 4D‐Var, using an incremental approach , 1994 .

[11]  J. O'Brien,et al.  Continuous data assimilation of drifting buoy trajectory into an equatorial Pacific Ocean model , 1995 .

[12]  Pierre De Mey,et al.  Data Assimilation at the Oceanic Mesoscale: A Review , 1997 .

[13]  Philippe Courtier,et al.  Unified Notation for Data Assimilation : Operational, Sequential and Variational , 1997 .

[14]  Bruno Luong,et al.  A variational method for the resolution of a data assimilation problem in oceanography , 1998 .

[15]  P. Delecluse,et al.  OPA 8.1 Ocean General Circulation Model reference manual , 1998 .

[16]  Thomas Kaminski,et al.  Recipes for adjoint code construction , 1998, TOMS.

[17]  K. Ide,et al.  Lagrangian data assimilation for point vortex systems , 2002 .

[18]  Ionel M. Navon,et al.  Second-Order Information in Data Assimilation* , 2002 .

[19]  Keith Beven,et al.  EGS-AGU-EUG Joint Assembly, Nice, France , 2003 .

[20]  K. Ide,et al.  A Method for Assimilation of Lagrangian Data , 2003 .

[21]  A. Mariano,et al.  Assimilation of drifter observations for the reconstruction of the Eulerian circulation field , 2003 .

[22]  T. M. Chin,et al.  Assimilation of drifter observations in primitive equation models of midlatitude ocean circulation , 2003 .

[23]  Jérôme Vialard,et al.  Three- and Four-Dimensional Variational Assimilation with a General Circulation Model of the Tropical Pacific Ocean. Part I: Formulation, Internal Diagnostics, and Consistency Checks , 2003 .

[24]  G. Reverdin,et al.  Near real-time analyses of the mesoscale circulation during the POMME experiment , 2005 .

[25]  J. Mead Assimilation of Simulated Float Data in Lagrangian Coordinates , 2005 .

[26]  K. Ide,et al.  A Method for Assimilating Lagrangian Data into a Shallow-Water-Equation Ocean Model , 2006 .

[27]  D. Nychka Data Assimilation” , 2006 .

[28]  P. Courtier,et al.  Variational Assimilation of Meteorological Observations With the Adjoint Vorticity Equation. I: Theory , 2007 .

[29]  P. Courtier,et al.  Variational Assimilation of Meteorological Observations With the Adjoint Vorticity Equation. Ii: Numerical Results , 2007 .

[30]  Roger Temam,et al.  Some Mathematical Problems in Geophysical Fluid Dynamics , 2009 .