Two types of GABAergic miniature inhibitory postsynaptic currents in mouse substantia gelatinosa neurons.

[1]  S. Prescott,et al.  Integration Time in a Subset of Spinal Lamina I Neurons Is Lengthened by Sodium and Calcium Currents Acting Synergistically to Prolong Subthreshold Depolarization , 2005, The Journal of Neuroscience.

[2]  M. Farrant,et al.  Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors , 2005, Nature Reviews Neuroscience.

[3]  T. Yamakura,et al.  Action of Isoflurane on the Substantia Gelatinosa Neurons of the Adult Rat Spinal Cord , 2005, Anesthesiology.

[4]  H. Haas,et al.  Pharmacological Properties of GABAA Receptors in Rat Hypothalamic Neurons Expressing the ϵ-Subunit , 2005, The Journal of Neuroscience.

[5]  D. Maxwell,et al.  Spinal dorsal horn neurone targets for nociceptive primary afferents: do single neurone morphological characteristics suggest how nociceptive information is processed at the spinal level , 2004, Brain Research Reviews.

[6]  M. Bieda,et al.  Major role for tonic GABAA conductances in anesthetic suppression of intrinsic neuronal excitability. , 2004, Journal of neurophysiology.

[7]  R. A. Davidoff,et al.  GABAA receptor subunit mRNA expression in cultured embryonic and adult human dorsal root ganglion neurons. , 2004, Brain research. Developmental brain research.

[8]  E. Perl,et al.  A Specific Inhibitory Pathway between Substantia Gelatinosa Neurons Receiving Direct C-Fiber Input , 2003, The Journal of Neuroscience.

[9]  M. Andresen,et al.  Pentobarbital enhances GABAergic neurotransmission to cardiac parasympathetic neurons, which is prevented by expression of GABA(A) epsilon subunit. , 2002, Anesthesiology.

[10]  P. Whiting,et al.  Overexpression of the GABAA receptor ε subunit results in insensitivity to anaesthetics , 2002, Neuropharmacology.

[11]  Gerhard Gründer,et al.  Drug interactions at GABAA receptors , 2002, Progress in Neurobiology.

[12]  P. Ciofi,et al.  Localisation of GABAA receptor ϵ-subunit in cholinergic and aminergic neurones and evidence for co-distribution with the θ-subunit in rat brain , 2002, Neuroscience.

[13]  E. Perl,et al.  Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn , 2002, The Journal of physiology.

[14]  E. Kirkness,et al.  Evidence for the formation of functionally distinct αβγε GABAA receptors , 2001 .

[15]  D. Prince,et al.  Kinetic and pharmacological properties of GABA(A) receptors in single thalamic neurons and GABA(A) subunit expression. , 2001, Journal of neurophysiology.

[16]  S. Kasparov,et al.  GABAA receptor ɛ‐subunit may confer benzodiazepine insensitivity to the caudal aspect of the nucleus tractus solitarii of the rat , 2001 .

[17]  E. Kirkness,et al.  GABAA Receptor ε and θ Subunits Display Unusual Structural Variation between Species and Are Enriched in the Rat Locus Ceruleus , 2000, The Journal of Neuroscience.

[18]  Xiao Hong Yu,et al.  Visualization of lamina I of the dorsal horn in live adult rat spinal cord slices , 2000, Journal of Neuroscience Methods.

[19]  M. Yoshimura,et al.  Norepinephrine Facilitates Inhibitory Transmission in Substantia Gelatinosa of Adult Rat Spinal Cord (Part 2): Effects on Somatodendritic Sites of GABAergic Neurons , 2000, Anesthesiology.

[20]  J. White,et al.  Interactions between Distinct GABAA Circuits in Hippocampus , 2000, Neuron.

[21]  E. Kumamoto,et al.  Actions of Midazolam on GABAergic Transmission in Substantia Gelatinosa Neurons of Adult Rat Spinal Cord Slices , 2000, Anesthesiology.

[22]  R. Mckernan,et al.  theta, a novel gamma-aminobutyric acid type A receptor subunit. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[23]  H. Higashi,et al.  Actions of opioids on excitatory and inhibitory transmission in substantia gelatinosa of adult rat spinal cord , 1999, The Journal of physiology.

[24]  Stuart G. Cull-Candy,et al.  Single-Channel Properties of Synaptic and Extrasynaptic GABAA Receptors Suggest Differential Targeting of Receptor Subtypes , 1999, The Journal of Neuroscience.

[25]  P. Whiting,et al.  Functional characteristics of recombinant human GABAA receptors containing the ϵ-subunit , 1998 .

[26]  Bernhard Lüscher,et al.  Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin , 1998, Nature Neuroscience.

[27]  H. Baba,et al.  Muscarinic facilitation of GABA release in substantia gelatinosa of the rat spinal dorsal horn , 1998, The Journal of physiology.

[28]  M. Ghamari-Langroudi,et al.  Changes of spontaneous miniature excitatory postsynaptic currents in rat hippocampal pyramidal cells induced by aniracetam , 1997, Pflügers Archiv.

[29]  I. Soltesz,et al.  Slow Kinetics of Miniature IPSCs during Early Postnatal Development in Granule Cells of the Dentate Gyrus , 1997, The Journal of Neuroscience.

[30]  P. Whiting,et al.  Neuronally Restricted RNA Splicing Regulates the Expression of a Novel GABAA Receptor Subunit Conferring Atypical Functional Properties , 1997, The Journal of Neuroscience.

[31]  E. Kirkness,et al.  Insensitivity to anaesthetic agents conferred by a class of GABAA receptor subunit , 1997, Nature.

[32]  H. Higashi,et al.  A novel slow excitatory postsynaptic current in substantia gelatinosa neurons of the rat spinal cord in vitro , 1996, Neuroscience.

[33]  Lewis Ca,et al.  Properties of spontaneous inhibitory synaptic currents in cultured rat spinal cord and medullary neurons. , 1996 .

[34]  Naiphinich Kotchabhakdi,et al.  Developmental Changes of Inhibitory Synaptic Currents in Cerebellar Granule Neurons: Role of GABAA Receptor α6 Subunit , 1996, The Journal of Neuroscience.

[35]  B. Orser,et al.  Propofol modulates activation and desensitization of GABAA receptors in cultured murine hippocampal neurons , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  E. Perl,et al.  Synaptic mediation from cutaneous mechanical nociceptors. , 1994, Journal of neurophysiology.

[37]  I. Módy,et al.  Noise analysis of miniature IPSCs in adult rat brain slices: properties and modulation of synaptic GABAA receptor channels. , 1994, Journal of neurophysiology.

[38]  M. Yoshimura,et al.  Blind patch-clamp recordings from substantia gelatinosa neurons in adult rat spinal cord slices: Pharmacological properties of synaptic currents , 1993, Neuroscience.

[39]  Robert A. Pearce,et al.  Physiological evidence for two distinct GABAA responses in rat hippocampus , 1993, Neuron.

[40]  T. Jessell,et al.  Primary afferent-evoked synaptic responses and slow potential generation in rat substantia gelatinosa neurons in vitro. , 1989, Journal of neurophysiology.

[41]  T. Jessell,et al.  Membrane properties of rat substantia gelatinosa neurons in vitro. , 1989, Journal of neurophysiology.

[42]  E. Perl,et al.  Central projections of identified, unmyelinated (C) afferent fibers innervating mammalian skin. , 1986, Science.

[43]  E. Perl,et al.  Excitation of marginal and substantia gelatinosa neurons in the primate spinal cord: Indications of their place in dorsal horn functional organization , 1978, The Journal of comparative neurology.

[44]  S. Gobel Golgi studies of the substantia gelationsa neurons in the spinal trigeminal nucleus , 1975, The Journal of comparative neurology.

[45]  B. Rexed The cytoarchitectonic organization of the spinal cord in the cat , 1952, The Journal of comparative neurology.

[46]  M. Bianchi,et al.  Spontaneous and gamma-aminobutyric acid (GABA)-activated GABA(A) receptor channels formed by epsilon subunit-containing isoforms. , 1999, Molecular pharmacology.

[47]  R. Mckernan,et al.  Structure and pharmacology of vertebrate GABAA receptor subtypes. , 1995, International review of neurobiology.

[48]  S. Nishi,et al.  Primary afferent‐evoked glycine‐ and GABA‐mediated IPSPs in substantia gelatinosa neurones in the rat spinal cord in vitro. , 1995, The Journal of physiology.