On the order of graphs with a given girth pair

A (k;g,h)-graph is a k-regular graph of girth pair (g,h) where g is the girth of the graph, h is the length of a smallest cycle of different parity than g and g

[1]  R. M. Damerell On Moore graphs , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  Frank Harary,et al.  Regular graphs with given girth pair , 1983, J. Graph Theory.

[3]  Connie Maude Campbell On cages for girth pair (6, b) , 1997, Discret. Math..

[4]  H. Sachs,et al.  Regukre Graphen gegebener Taillenweite mit minimaler Knotenzahl , 1963 .

[5]  Mehdi Behzad,et al.  Graphs and Digraphs , 1981, The Mathematical Gazette.

[6]  Norman J. Pullman,et al.  Regular graphs with prescribed odd girth , 1983 .

[7]  Peter Kovács The minimal trivalent graphs with given smallest odd cycle , 1985, Discret. Math..

[8]  Camino Balbuena,et al.  Incidence Matrices of Projective Planes and of Some Regular Bipartite Graphs of Girth 6 with Few Vertices , 2008, SIAM J. Discret. Math..

[9]  Norman Biggs,et al.  Graphs with even girth and small excess , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  G. Exoo,et al.  Dynamic Cage Survey , 2011 .

[11]  Norman Biggs Algebraic Graph Theory: Index , 1974 .

[12]  W. T. Tutte A family of cubical graphs , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  E. Bannai,et al.  On finite Moore graphs , 1973 .

[14]  Guo-Hui Zhang Smallest regular graphs with prescribed odd girth , 1991, J. Graph Theory.

[15]  András Gács,et al.  On geometric constructions of (k, g)-graphs , 2008, Contributions Discret. Math..

[16]  Pak-Ken Wong,et al.  Cages - a survey , 1982, J. Graph Theory.

[17]  Dragan Marusic,et al.  The 10-cages and derived configurations , 2004, Discret. Math..

[18]  Camino Balbuena,et al.  Constructions of small regular bipartite graphs of girth 6 , 2011, Networks.

[19]  Mirka Miller,et al.  A lower bound on the order of regular graphs with given girth pair , 2007 .

[20]  Ping Wang,et al.  On the Monotonicity of (k;g,h)-graphs , 2002 .

[21]  Vito Napolitano,et al.  Íëìêêääëááae Âçíêaeaeä Ç Çååáaeaeìçêááë Îóðùññ ¿½´¾¼¼¼µ¸è× ½½½ß¾¼¼ , 2022 .