On the order of graphs with a given girth pair
暂无分享,去创建一个
[1] R. M. Damerell. On Moore graphs , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.
[2] Frank Harary,et al. Regular graphs with given girth pair , 1983, J. Graph Theory.
[3] Connie Maude Campbell. On cages for girth pair (6, b) , 1997, Discret. Math..
[4] H. Sachs,et al. Regukre Graphen gegebener Taillenweite mit minimaler Knotenzahl , 1963 .
[5] Mehdi Behzad,et al. Graphs and Digraphs , 1981, The Mathematical Gazette.
[6] Norman J. Pullman,et al. Regular graphs with prescribed odd girth , 1983 .
[7] Peter Kovács. The minimal trivalent graphs with given smallest odd cycle , 1985, Discret. Math..
[8] Camino Balbuena,et al. Incidence Matrices of Projective Planes and of Some Regular Bipartite Graphs of Girth 6 with Few Vertices , 2008, SIAM J. Discret. Math..
[9] Norman Biggs,et al. Graphs with even girth and small excess , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.
[10] G. Exoo,et al. Dynamic Cage Survey , 2011 .
[11] Norman Biggs. Algebraic Graph Theory: Index , 1974 .
[12] W. T. Tutte. A family of cubical graphs , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.
[13] E. Bannai,et al. On finite Moore graphs , 1973 .
[14] Guo-Hui Zhang. Smallest regular graphs with prescribed odd girth , 1991, J. Graph Theory.
[15] András Gács,et al. On geometric constructions of (k, g)-graphs , 2008, Contributions Discret. Math..
[16] Pak-Ken Wong,et al. Cages - a survey , 1982, J. Graph Theory.
[17] Dragan Marusic,et al. The 10-cages and derived configurations , 2004, Discret. Math..
[18] Camino Balbuena,et al. Constructions of small regular bipartite graphs of girth 6 , 2011, Networks.
[19] Mirka Miller,et al. A lower bound on the order of regular graphs with given girth pair , 2007 .
[20] Ping Wang,et al. On the Monotonicity of (k;g,h)-graphs , 2002 .
[21] Vito Napolitano,et al. Íëìêêääëááae Âçíêaeaeä Ç Çååáaeaeìçêááë Îóðùññ ¿½´¾¼¼¼µ¸è× ½½½ß¾¼¼ , 2022 .