A Theory and Algorithms for Combinatorial Reoptimization

Many real-life applications involve systems that change dynamically over time. Thus, throughout the continuous operation of such a system, it is required to compute solutions for new problem instances, derived from previous instances. Since the transition from one solution to another incurs some cost, a natural goal is to have the solution for the new instance close to the original one (under a certain distance measure). In this paper we develop a general framework for combinatorial repotimization, encompassing classical objective functions as well as the goal of minimizing the transition cost from one solution to the other. Formally, we say that $$\mathcal{A}$$A is an $$(r, \rho )$$(r,ρ)-reapproximation algorithm if it achieves a $$\rho $$ρ-approximation for the optimization problem, while paying a transition cost that is at most r times the minimum required for solving the problem optimally. Using our model we derive reoptimization and reapproximation algorithms for several classes of combinatorial reoptimization problems. This includes a fully polynomial time $$(1+\varepsilon _1, 1+\varepsilon _2)$$(1+ε1,1+ε2)-reapproximation scheme for the wide class of DP-benevolent problems introduced by Woeginger (Proceedings of Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, 1999), a (1, 3)-reapproximation algorithm for the metric k-Center problem, and (1, 1)-reoptimization algorithm for polynomially solvable subset-selection problems. Thus, we distinguish here for the first time between classes of reoptimization problems by their hardness status with respect to the objective of minimizing transition costs, while guaranteeing a good approximation for the underlying optimization problem.

[1]  Mohit Singh,et al.  New approaches to multi-objective optimization , 2013, Mathematical Programming.

[2]  Srinivasan Seshan,et al.  Improving reliable transport and handoff performance in cellular wireless networks , 1995, Wirel. Networks.

[3]  Mikkel Thorup,et al.  Dynamic Graph Algorithms with Applications , 2000, SWAT.

[4]  Michael R. Fellows,et al.  On the parameterized complexity of dynamic problems , 2015, Theor. Comput. Sci..

[5]  Anass Nagih,et al.  Lagrangean heuristics combined with reoptimization for the 0-1 bidimensional knapsack problem , 2006, Discret. Appl. Math..

[6]  Hadas Shachnai,et al.  Minimal Cost Reconfiguration of Data Placement in Storage Area Network , 2009, WAOA.

[7]  G. Ausiello,et al.  Complexity and Approximation in Reoptimization , 2008 .

[8]  Hadas Shachnai,et al.  On Two Class-Constrained Versions of the Multiple Knapsack Problem , 2001, Algorithmica.

[9]  Aditya Bhaskara,et al.  Centrality of trees for capacitated k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-center , 2014, Mathematical Programming.

[10]  Enrico Nardelli,et al.  Swapping a Failing Edge of a Single Source Shortest Paths Tree Is Good and Fast , 2002, Algorithmica.

[11]  Tomás Feder,et al.  Optimal algorithms for approximate clustering , 1988, STOC '88.

[12]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[13]  A. Frieze,et al.  A simple heuristic for the p-centre problem , 1985 .

[14]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[15]  Luca Bertazzi,et al.  Reoptimizing the traveling salesman problem , 2003, Networks.

[16]  J. M. Moore,et al.  A Functional Equation and its Application to Resource Allocation and Sequencing Problems , 1969 .

[17]  Antonio Frangioni,et al.  A Computational Study of Cost Reoptimization for Min-Cost Flow Problems , 2006, INFORMS J. Comput..

[18]  David B. Shmoys,et al.  A unified approach to approximation algorithms for bottleneck problems , 1986, JACM.

[19]  Rajmohan Rajaraman,et al.  A general approach for incremental approximation and hierarchical clustering , 2006, SODA '06.

[20]  Perambur S. Neelakanta,et al.  A Textbook on ATM Telecommunications: Principles and Implementation , 2000 .

[21]  Guido Proietti,et al.  On the Approximability of TSP on Local Modifications of Optimally Solved Instances , 2007, Algorithmic Oper. Res..

[22]  Samir Khuller,et al.  Fast Reconfiguration of Data Placement in Parallel Disks , 2006, ALENEX.

[23]  Hadas Shachnai,et al.  A Theory and Algorithms for Combinatorial Reoptimization , 2012, LATIN.

[24]  J. M. Moore An n Job, One Machine Sequencing Algorithm for Minimizing the Number of Late Jobs , 1968 .

[25]  Srinivas R. Kashyap,et al.  Algorithms for data placement, reconfiguration and monitoring in storage networks , 2007 .

[26]  Baruch Schieber,et al.  The Euclidean k-Supplier Problem , 2013, IPCO.

[27]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[28]  Maria Grazia Scutellà,et al.  A new algorithm for reoptimizing shortest paths when the arc costs change , 2003, Oper. Res. Lett..

[29]  David Eppstein,et al.  Dynamic graph algorithms , 2010 .

[30]  Vangelis Th. Paschos,et al.  Simple and Fast Reoptimizations for the Steiner Tree Problem , 2009, Algorithmic Oper. Res..

[31]  Giuseppe Cattaneo,et al.  Experimental analysis of dynamic minimum spanning tree algorithms , 1997, SODA '97.

[32]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[33]  Michael A. Bender,et al.  Reallocation Problems in Scheduling , 2013, Algorithmica.

[34]  Tami Tamir,et al.  Reoptimization of the Minimum Total Flow-Time Scheduling Problem , 2012, MedAlg.

[35]  Ronald L. Graham,et al.  Bounds on Multiprocessing Timing Anomalies , 1969, SIAM Journal of Applied Mathematics.

[36]  Gerhard J. Woeginger,et al.  When does a dynamic programming formulation guarantee the existence of an FPTAS? , 1999, SODA '99.

[37]  Zvi Drezner,et al.  Facility location - applications and theory , 2001 .

[38]  Mark Sh. Levin Towards Integrated Glance To Restructuring in Combinatorial Optimization , 2015, ArXiv.

[39]  Vangelis Th. Paschos,et al.  Reoptimization of minimum and maximum traveling salesman's tours , 2009, J. Discrete Algorithms.

[40]  R. Ravi,et al.  The Constrained Minimum Spanning Tree Problem (Extended Abstract) , 1996, SWAT.

[41]  Murali S. Kodialam,et al.  Fast network re-optimization schemes for MPLS and optical networks , 2006, Comput. Networks.

[42]  David B. Shmoys,et al.  A Best Possible Heuristic for the k-Center Problem , 1985, Math. Oper. Res..

[43]  Mark Sh. Levin Restructuring in Combinatorial Optimization , 2011, ArXiv.

[44]  Piotr Sankowski,et al.  The Power of Dynamic Distance Oracles: Efficient Dynamic Algorithms for the Steiner Tree , 2013, STOC.

[45]  Jijun Tang,et al.  A New Approach for Tree Alignment Based on Local Re-Optimization , 2008, 2008 International Conference on BioMedical Engineering and Informatics.

[46]  Fabrizio Grandoni,et al.  Optimization with More than One Budget , 2010, ArXiv.

[47]  Asser N. Tantawi,et al.  Dynamic placement for clustered web applications , 2006, WWW '06.

[48]  Dennis Komm,et al.  Reoptimization of the Shortest Common Superstring Problem , 2009, Algorithmica.

[49]  Philip S. Yu,et al.  Disk load balancing for video-on-demand systems , 1997, Multimedia Systems.

[50]  Michael A. Bender,et al.  Cost-Oblivious Storage Reallocation , 2014, ACM Trans. Algorithms.

[51]  Gerald R. Ash,et al.  Dynamic Routing in Telecommunications Networks , 1997 .

[52]  Alberto Leon-Garcia,et al.  Communication Networks , 2000 .

[53]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[54]  Fabrizio Grandoni,et al.  Budgeted matching and budgeted matroid intersection via the gasoline puzzle , 2008, Math. Program..

[55]  Luca Bertazzi,et al.  Reoptimizing the 0-1 knapsack problem , 2010, Discret. Appl. Math..

[56]  John C. S. Lui,et al.  A performance study of dynamic replication techniques in continuous media servers , 2000, Proceedings 8th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (Cat. No.PR00728).

[57]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[58]  Michael R. Fellows,et al.  Review of: Fundamentals of Parameterized Complexity by Rodney G. Downey and Michael R. Fellows , 2015, SIGA.

[59]  Juraj Hromkovic,et al.  On the Hardness of Reoptimization , 2008, SOFSEM.

[60]  Samir Khuller,et al.  Approximation algorithms for data placement on parallel disks , 2000, SODA '00.