Drastic microstructural modification of Bi2Ca2Co2O ceramics by Na doping and laser texturing

[1]  H. Kleinke,et al.  Large Scale Solid State Synthetic Technique for High Performance Thermoelectric Materials: Magnesium-Silicide-Stannide , 2020 .

[2]  X. Huai,et al.  Thermoelectric properties of lower concentration K-doped Ca 3 Co 4 O 9 ceramics , 2018 .

[3]  M. A. Madre,et al.  Improvement of Bi2Sr2Co2Oy thermoelectric performances by Na doping , 2018, Journal of Electroceramics.

[4]  Woochul Kim,et al.  Enhancement of the thermoelectric performance of bulk SnTe alloys: Via the synergistic effect of band structure modification and chemical bond softening , 2017 .

[5]  Tiejun Zhu,et al.  Enhanced thermoelectric performance of PbTe bulk materials with figure of merit zT >2 by multi-functional alloying , 2016 .

[6]  A. Klyndyuk,et al.  Synthesis, structure, and properties of Ca3Co3.85M0.15O9 + δ (M = Ti–Zn, Mo, W, Pb, Bi) layered thermoelectrics , 2015, Inorganic Materials.

[7]  M. A. Madre,et al.  Use of laser technology to produce high thermoelectric performances in Bi2Sr2Co1.8Ox , 2015 .

[8]  M. A. Madre,et al.  Very large superconducting currents induced by growth tailoring , 2015 .

[9]  M. A. Madre,et al.  Effect of synthesis methods on the Ca3Co4O9 thermoelectric ceramic performances , 2015 .

[10]  S. LeBlanc Thermoelectric generators: Linking material properties and systems engineering for waste heat recovery applications , 2014 .

[11]  N. Pryds,et al.  High temperature thermoelectric properties of Ca3Co4O9+δ by auto-combustion synthesis and spark plasma sintering , 2014 .

[12]  Yan-Feng Chen,et al.  Intrinsically modified thermoelectric performance of alkaline-earth isovalently substituted [Bi2AE2O4][CoO2]y single crystals , 2013 .

[13]  M. A. Madre,et al.  Solution-based synthesis routes to thermoelectric Bi2Ca2Co1.7Ox , 2011 .

[14]  Ryoji Funahashi,et al.  Oxide thermoelectrics: The challenges, progress, and outlook , 2011 .

[15]  M. A. Madre,et al.  Cerámicas termoeléctricas Bi 2 Ca 2 Co 1.7 O x texturadas mediante fusión zonal flotante inducida por láser , 2008 .

[16]  M. Hervieu,et al.  Thermoelectric power in misfit cobalties ceramics: optimization by chemical substitutions , 2006 .

[17]  Z. Lü,et al.  Fabrication and thermoelectric properties of highly textured Ca9Co12O28 ceramic , 2006 .

[18]  David Michael Rowe,et al.  General Principles and Basic Considerations , 2005 .

[19]  D. Chateigner,et al.  Synthesis and thermoelectric properties of Bi_2.5Ca_2.5Co_2O_x layered cobaltites , 2005 .

[20]  H. Fjellvåg,et al.  Evidence for Oxygen Vacancies in Misfit-Layered Calcium Cobalt Oxide, [CoCa2O3]qCoO2 , 2004 .

[21]  M. Hervieu,et al.  Magnetoresistance and magnetothermopower properties of Bi/Ca/Co/O and Bi(Pb)/Ca/Co/O misfit layer cobaltites , 2003 .

[22]  M. Shikano,et al.  Bi2Sr2Co2Oy whiskers with high thermoelectric figure of merit , 2002 .

[23]  S. Maekawa,et al.  Thermopower in cobalt oxides , 2000 .

[24]  R. Funahashi,et al.  Thermoelectric properties of Bi2Sr2Co2Ox polycrystalline materials , 2000 .

[25]  Ichiro Terasaki,et al.  Large thermoelectric power in NaCo 2 O 4 single crystals , 1997 .

[26]  C. Torardi,et al.  Ca4Bi60L3, a Compound Containing an Unusually Low Bismuth Coordination Number and Short Bi-Bi Contacts , 1990 .

[27]  C. Torardi,et al.  Calcium bismuth oxide (Ca4Bi6O13), a compound containing an unusually low bismuth coordination number and short bismuth.cntdot..cntdot..cntdot.bismuth contacts , 1990 .

[28]  M. A. Madre,et al.  High thermoelectric performance in Bi2-xPbxBa2Co2Oy promoted by directional growth and annealing , 2016 .

[29]  M. A. Madre,et al.  Effect of synthetic methods on the thermoelectrical properties of textured Bi2Ca2Co1.7Ox ceramics , 2010 .