Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: from symmetric to asymmetric edge rounding.

The sharpness of corners/edges can have a large effect on the optical responses of metallic nanostructures. Here we deploy the theory of transformation optics to analytically investigate a variety of blunt plasmonic structures, including overlapping nanowire dimers and crescent-shaped nanocylinders. These systems are shown to support several discrete optical modes, whose energy and line width can be controlled by tuning the nanoparticle geometry. In particular, the necessary conditions are highlighted respectively for the broadband light absorption effect and the invisibility dips that appear in the radiative spectrum. More detailed discussions are provided especially with respect to the structures with asymmetric edge rounding. These structures can support additional subradiant modes, whose interference with the neighboring dipolar modes results in a rapid change of the scattering cross-section, similar to the phenomenon observed in plasmonic Fano resonances. Finite element numerical calculations are also performed to validate the analytical predictions. The physical insights into blunt nanostructures presented in this work may be of great interest for the design of broadband light-harvesting devices, invisible and noninvasive biosensors, and slowing-light devices.

[1]  Dang Yuan Lei,et al.  Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach. , 2011, ACS nano.

[2]  Mohsen Rahmani,et al.  Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape. , 2012, Nano letters.

[3]  Peter Nordlander,et al.  Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. , 2008, Nano letters.

[4]  Alexandre Aubry,et al.  Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: A transformation optics approach , 2011 .

[5]  J. Pendry,et al.  Mimicking Surface Plasmons with Structured Surfaces , 2004, Science.

[6]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[7]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[8]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[9]  F. García-Vidal,et al.  Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides. , 2010, Nano letters.

[10]  Rostislav Bukasov,et al.  Highly tunable infrared extinction properties of gold nanocrescents. , 2007, Nano letters.

[11]  Emil Prodan,et al.  Quantum plasmonics: optical properties and tunability of metallic nanorods. , 2010, ACS nano.

[12]  David R. Smith,et al.  Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light. , 2010, Nano letters.

[13]  Peter Nordlander,et al.  Heterodimers: plasmonic properties of mismatched nanoparticle pairs. , 2010, ACS nano.

[14]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[15]  Martijn Wubs,et al.  Surface plasmon wave adapter designed with transformation optics. , 2011, ACS nano.

[16]  A. Ward,et al.  Refraction and geometry in Maxwell's equations , 1996 .

[17]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticles near Metallic Surfaces , 2004 .

[18]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[19]  Stefan A. Maier,et al.  Broadband nano-focusing of light using kissing nanowires , 2010 .

[20]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[21]  R. McPhedran,et al.  Electrostatic and optical resonances of cylinder pairs , 1981 .

[22]  Peter Nordlander,et al.  Plasmon hybridization in nanorod dimers , 2008 .

[23]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[24]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[25]  Rostislav Bukasov,et al.  Probing the plasmonic near-field of gold nanocrescent antennas. , 2010, ACS nano.

[26]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[27]  J. Pendry,et al.  Collection and concentration of light by touching spheres: a transformation optics approach. , 2010, Physical review letters.

[28]  J. Pendry,et al.  Transformation-optics description of nonlocal effects in plasmonic nanostructures. , 2012, Physical review letters.

[29]  M. Kreiter,et al.  Tuning resonances on crescent-shaped noble-metal nanoparticles , 2007 .

[30]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.

[31]  Richard F. Haglund,et al.  Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy. , 2012, ACS nano.

[32]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[33]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[34]  J. Pendry,et al.  Plasmonic light-harvesting devices over the whole visible spectrum. , 2010, Nano letters.

[35]  Claire M. Cobley,et al.  Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. , 2011, Chemical reviews.

[36]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[37]  Dang Yuan Lei,et al.  Plasmonic interaction between overlapping nanowires. , 2011, ACS nano.

[38]  Peter Nordlander,et al.  Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. , 2009, ACS nano.

[39]  Naomi J Halas,et al.  Plasmonics: an emerging field fostered by Nano Letters. , 2010, Nano letters.

[40]  Peter Nordlander,et al.  Perforated semishells: far-field directional control and optical frequency magnetic response. , 2010, ACS nano.

[41]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[42]  Javier Aizpurua,et al.  Close encounters between two nanoshells. , 2008, Nano letters.

[43]  Dang Yuan Lei,et al.  Broadband light harvesting nanostructures robust to edge bluntness. , 2012, Physical review letters.

[44]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[45]  In-Yong Park,et al.  High-harmonic generation by resonant plasmon field enhancement , 2008, Nature.

[46]  Naomi J Halas,et al.  Three-dimensional nanostructures as highly efficient generators of second harmonic light. , 2011, Nano letters.

[47]  Aeneas Wiener,et al.  Nonlocal effects in the nanofocusing performance of plasmonic tips. , 2012, Nano letters.

[48]  Dang Yuan Lei,et al.  Interaction between plasmonic nanoparticles revisited with transformation optics. , 2010, Physical review letters.

[49]  P. Nordlander,et al.  Removing a wedge from a metallic nanodisk reveals a fano resonance. , 2011, Nano letters.

[50]  Miguel Navarro-Cia,et al.  Broad-band near-infrared plasmonic nanoantennas for higher harmonic generation. , 2012, ACS nano.

[51]  F. García-Vidal,et al.  Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. , 2008, Physical review letters.

[52]  Ross C. McPhedran,et al.  Transport properties of touching cylinder pairs and of the square array of touching cylinders , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[53]  P. Nordlander,et al.  PLASMON HYBRIDIZATION IN COMPLEX NANOSTRUCTURES , 2007 .

[54]  D. Mckenzie,et al.  Electrostatic and optical resonances of arrays of cylinders , 1980 .

[55]  George C Schatz,et al.  Optical properties of nanowire dimers with a spatially nonlocal dielectric function. , 2010, Nano letters.

[56]  J. Pendry,et al.  Collective Theory for Surface Enhanced Raman Scattering. , 1996, Physical review letters.

[57]  Alexandre Aubry,et al.  Surface plasmons and singularities. , 2010, Nano letters.

[58]  Niels Verellen,et al.  Fano resonances in individual coherent plasmonic nanocavities. , 2009, Nano letters.

[59]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[60]  Arto V. Nurmikko,et al.  Strongly Interacting Plasmon Nanoparticle Pairs: From Dipole−Dipole Interaction to Conductively Coupled Regime , 2004 .

[61]  Stefan A. Maier,et al.  Conformal transformation applied to plasmonics beyond the quasistatic limit , 2010 .

[62]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[63]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[64]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[65]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[66]  G. Wiederrecht,et al.  Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. , 2005, Physical review letters.

[67]  A. Borisov,et al.  Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. , 2012, Nano letters.

[68]  Y. Wang,et al.  Plasmon-induced transparency in metamaterials. , 2008, Physical review letters.

[69]  H. Giessen,et al.  Plasmonic EIT at the Drude damping limit , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.