Spectral and Transient Luminescence Measurements on GaSb/AlGaSb Quantum Wells Grown on GaSb/GaAs Heterojunctions with and without Interfacial Misfit Arrays

Growth of 90° interfacial-misfit-dislocation (IMF) array at heterointerfaces offers low dislocation densities in highly mismatched heterostructures such as GaSb/GaAs. We investigated time-integrated and time-resolved photoluminescence (PL) properties of a GaSb/AlGaSb quantum well (QW) structure grown on (001) GaAs substrate with and without IMF array at the GaSb-buffer/GaAs interface. Our observation reveals that the low-temperature PL from the QW with IMF is twice more intense than that of the QW without IMF, indicating higher quantum efficiency with IMF. The QW with IMF also exhibited the band filling effect at higher excitation power revealed from the spectrally resolved PL decay measurements. These results are the indication of subdued dislocation density with the IMF growth mode. Our PL measurement results along with supportive band-structure calculation of the GaSb/AlGaSb QW show that the luminescence efficiency of the present QW structure is limited by the hole leakage at elevated temperature. Therefore the IMF effect will be more clearly demonstrated by replacing the heterostructure with the one with higher band-offsets.

[1]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[2]  Diana L. Huffaker,et al.  Epitaxial growth and formation of interfacial misfit array for tensile GaAs on GaSb , 2007 .

[3]  H. Choi,et al.  Room‐temperature cw operation at 2.2 μm of GaInAsSb/AlGaAsSb diode lasers grown by molecular beam epitaxy , 1991 .

[4]  K. Kano Semiconductor Devices , 1997 .

[5]  Weidong Yang,et al.  Effect of carrier emission and retrapping on luminescence time decays in InAs/GaAs quantum dots , 1997 .

[6]  Ming C. Wu,et al.  Photoluminescence of high‐quality GaSb grown from Ga‐ and Sb‐rich solutions by liquid‐phase epitaxy , 1992 .

[7]  G. Balakrishnan,et al.  Structural Analysis of Highly Relaxed GaSb Grown on GaAs Substrates with Periodic Interfacial Array of 90° Misfit Dislocations , 2009, Nanoscale research letters.

[8]  W. Marsden I and J , 2012 .

[9]  Eoin P. O'Reilly,et al.  Theoretical performance and structure optimization of 3.5–4.5 μm InGaSb/InGaAlSb multiple-quantum-well lasers , 2001 .

[10]  M. Manfra,et al.  High-performance GaInAsSb thermophotovoltaic devices with an AlGaAsSb window , 1997 .

[11]  M. N. Kutty,et al.  Electronic characteristics of the interfacial states embedded in “buffer-free” GaSb/GaAs (001) heterojunctions , 2009 .

[12]  Laurent Cerutti,et al.  Room-temperature operation of a 2.25 μm electrically pumped laser fabricated on a silicon substrate , 2009 .

[13]  P. Grosse,et al.  Growth of GaInAsSb Alloys by MOCVD and Characterization of GaInAsSb / GaSb p‐n Photodiodes , 1988 .

[14]  C. Bethea,et al.  Molecular‐beam epitaxy of GaSb/AlSb optical device layers on Si(100) , 1986 .

[15]  D. Huffaker,et al.  Formation and optical characteristics of strain-relieved and densely stacked GaSb∕GaAs quantum dots , 2006 .

[16]  Diana L. Huffaker,et al.  Room-temperature lasing at 1.82μm of GaInSb∕AlGaSb quantum wells grown on GaAs substrates using an interfacial misfit array , 2007 .

[17]  Y. P. Varshni Temperature dependence of the energy gap in semiconductors , 1967 .

[18]  A. K. Kalagin,et al.  Strong sensitivity of photoluminescence of InAs/AlAs quantum dots to defects: evidence for lateral inter-dot transport , 2006 .

[19]  Nikolai N. Ledentsov,et al.  RADIATIVE RECOMBINATION IN TYPE-II GASB/GAAS QUANTUM DOTS , 1995 .

[20]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[21]  Diana L. Huffaker,et al.  Atomistic modeling of strain distribution in self-assembled interfacial misfit dislocation (IMF) arrays in highly mismatched III–V semiconductor materials , 2007 .

[22]  R. Gutmann,et al.  InGaAsSb thermophotovoltaic diode: Physics evaluation , 1999 .

[23]  J. B. Boos,et al.  Mobility enhancement in strained p-InGaSb quantum wells , 2007 .

[24]  Diana L. Huffaker,et al.  III/V ratio based selectivity between strained Stranski-Krastanov and strain-free GaSb quantum dots on GaAs , 2006 .

[25]  Claude Alibert,et al.  Tunable diode laser absorption spectroscopy of carbon monoxide around 2.35 μm , 1998 .

[26]  I. Suemune,et al.  Inter-dot coupling and excitation transfer mechanisms of telecommunication band InAs quantum dots at elevated temperatures , 2012, 1202.1589.

[27]  Diana L. Huffaker,et al.  Simultaneous interfacial misfit array formation and antiphase domain suppression on miscut silicon substrate , 2008 .

[28]  Subpicosecond timescale carrier dynamics in GaInAsSb∕AlGaAsSb double quantum wells emitting at 2.3μm , 2008 .

[29]  R. Leonelli,et al.  Carrier thermal escape in families of InAs/InP self-assembled quantum dots , 2009, 0910.0480.

[30]  A. Forchel,et al.  Photoreflectance and photoluminescence study of Ga0.76In0.24Sb/GaSb single quantum wells: Band structure and thermal quenching of photoluminescence , 2008 .

[31]  W. Shen,et al.  Photoluminescence of quaternary GaInAsSb/AlGaAsSb strained multiple quantum wells , 1995 .

[32]  R. Murray,et al.  Temperature and excitation density dependence of the photoluminescence from annealed InAs/GaAs quantum dots , 2003 .

[33]  Scholz,et al.  Influence of barrier height on carrier lifetime in Ga1-yInyP/(AlxGa1-x)1-yInyP single quantum wells. , 1992, Physical review. B, Condensed matter.

[34]  Diana L. Huffaker,et al.  Strain relief by periodic misfit arrays for low defect density GaSb on GaAs , 2006 .

[35]  Pedro Barrios,et al.  Single-mode 2.4 μm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing , 2009 .

[36]  Junyeong Lee,et al.  High-resolution transmission electron microscopy study on the growth modes of GaSb islands grown on a semi-insulating GaAs (001) substrate , 2007 .

[37]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.