Accelerated Newton Iteration: Roots of Black Box Polynomials and Matrix Eigenvalues

We study the problem of computing the largest root of a real rooted polynomial $p(x)$ to within error $\varepsilon $ given only black box access to it, i.e., for any $x \in {\mathbb R}$, the algorithm can query an oracle for the value of $p(x)$, but the algorithm is not allowed access to the coefficients of $p(x)$. A folklore result for this problem is that the largest root of a polynomial can be computed in $O(n \log (1/\varepsilon ))$ polynomial queries using the Newton iteration. We give a simple algorithm that queries the oracle at only $O(\log n \log(1/\varepsilon ))$ points, where $n$ is the degree of the polynomial. Our algorithm is based on a novel approach for accelerating the Newton method by using higher derivatives. As a special case, we consider the problem of computing the top eigenvalue of a symmetric matrix in ${\mathbb Q}^{n \times n}$ to within error $\varepsilon $ in time polynomial in the input description, i.e., the number of bits to describe the matrix and $\log(1/\varepsilon )$. Well-known methods such as the power iteration and Lanczos iteration incur running time polynomial in $1/\varepsilon $, while Gaussian elimination takes $\Omega(n^4)$ bit operations. As a corollary of our main result, we obtain a $\tilde{O}(n^{\omega} \log^2 ( ||A||_F/\varepsilon ))$ bit complexity algorithm to compute the top eigenvalue of the matrix $A$ or to check if it is approximately PSD ($A \succeq -\varepsilon I$).

[1]  Michael Ben-Or,et al.  The Quasi-Random Perspective on Matrix Spectral Analysis with Applications , 2015, ArXiv.

[2]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[3]  Gentian Zavalani A Modification of Newton Method with Third-Order Convergence , 2014 .

[4]  Nicholas J. Higham,et al.  Stable and Efficient Spectral Divide and Conquer Algorithms for the Symmetric Eigenvalue Decomposition and the SVD , 2013, SIAM J. Sci. Comput..

[5]  Stephen J. Wright,et al.  An accelerated Newton method for equations with semismooth Jacobians and nonlinear complementarity problems , 2008, Math. Program..

[6]  James Demmel,et al.  Fast linear algebra is stable , 2006, Numerische Mathematik.

[7]  Yitian Li,et al.  A modification of Newton method with third-order convergence , 2006, Appl. Math. Comput..

[8]  Arne Storjohann,et al.  The shifted number system for fast linear algebra on integer matrices , 2005, J. Complex..

[9]  Erich Kaltofen,et al.  On the complexity of computing determinants , 2001, computational complexity.

[10]  Miguel Ángel Hernández,et al.  An acceleration of Newton's method: Super-Halley method , 2001, Appl. Math. Comput..

[11]  Bahman Kalantari,et al.  Newton's method and generation of a determinantal family of iteration functions , 2000 .

[12]  Victor Y. Pan,et al.  The complexity of the matrix eigenproblem , 1999, STOC '99.

[13]  J. A. Ezquerro,et al.  On a Convex Acceleration of Newton's Method , 1999 .

[14]  Victor Y. Pan,et al.  Solving a Polynomial Equation: Some History and Recent Progress , 1997, SIAM Rev..

[15]  Bahman Kalantari,et al.  A basic family of iteration functions for polynomial root finding and its characterizations , 1997 .

[16]  James A. Pennline,et al.  Accelerated Convergence in Newton's Method , 1996, SIAM Rev..

[17]  V. Pan Optimal and nearly optimal algorithms for approximating polynomial zeros , 1996 .

[18]  William H. Press,et al.  Numerical recipes , 1990 .

[19]  A. Schrijver Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[20]  J. Dixon Exact solution of linear equations usingP-adic expansions , 1982 .

[21]  Michael A. Frumkin,et al.  Polynomial Time Algorithms in the Theory of Linear Diophantine Equations , 1977, FCT.

[22]  E. Bareiss Sylvester’s identity and multistep integer-preserving Gaussian elimination , 1968 .

[23]  J. Edmonds Systems of distinct representatives and linear algebra , 1967 .

[24]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[25]  Nebojsa M. Ralevic,et al.  Geometric mean Newton's method for simple and multiple roots , 2008, Appl. Math. Lett..

[26]  E. Kaltofen,et al.  Computing the sign or the value of the determinant of an integer matrix, a complexity survey , 2004 .

[27]  A. Householder The numerical treatment of a single nonlinear equation , 1970 .

[28]  Herman H. Goldstine,et al.  The Jacobi Method for Real Symmetric Matrices , 1959, JACM.

[29]  R. Mises,et al.  Praktische Verfahren der Gleichungsauflösung . , 1929 .