Entropy-Based Optimization of Nonlinear Separable Discrete Decision Models

This paper develops a new way to help solve difficult linear and nonlinear discrete-optimization decision models more efficiently by introducing a problem-difficulty metric that uses the concept of entropy from information theory. Our entropy metric is employed to devise rules for problem partitioning within an implicit enumeration method, where branching is accomplished based on the subproblem complexity. The only requirement for applying our metric is the availability of upper bounds on branching subproblems, which are often computed within most implicit enumeration methods such as branch-and-bound or cutting-plane-based methods. Focusing on problems with a relatively small number of constraints, but with a large number of variables, we develop a hybrid partitioning and enumeration solution scheme by combining the entropic approach with the recently developed improved surrogate constraint ISC method to produce the new method we call ISCENT. Our computational results indicate that ISCENT can be an order of magnitude more efficient than commercial solvers, such as CPLEX, for convex instances with no more than eight constraints. Furthermore, for nonconvex instances, ISCENT is shown to be significantly more efficient than other standard global solvers. This paper was accepted by Dimitris Bertsimas, optimization.

[1]  Saïd Hanafi,et al.  The Multidimensional 0-1 Knapsack Problem—Bounds and Computational Aspects , 2005, Ann. Oper. Res..

[2]  Paolo Toth,et al.  An Exact Algorithm for the Two-Constraint 0 - 1 Knapsack Problem , 2003, Oper. Res..

[3]  Alice E. Smith,et al.  An ant colony optimization algorithm for the redundancy allocation problem (RAP) , 2004, IEEE Transactions on Reliability.

[4]  Michael Satosi Watanabe,et al.  Information Theoretical Analysis of Multivariate Correlation , 1960, IBM J. Res. Dev..

[5]  Michel Vasquez,et al.  Improved results on the 0-1 multidimensional knapsack problem , 2005, Eur. J. Oper. Res..

[6]  Mario Gerla,et al.  On the Topological Design of Distributed Computer Networks , 1977, IEEE Trans. Commun..

[7]  David W. Coit,et al.  Reliability optimization of series-parallel systems using a genetic algorithm , 1996, IEEE Trans. Reliab..

[8]  Toshihide Ibaraki,et al.  Resource allocation problems - algorithmic approaches , 1988, MIT Press series in the foundations of computing.

[9]  F. Glover A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem , 1965 .

[10]  Ronald L. Rardin,et al.  A new surrogate dual multiplier search procedure , 1987 .

[11]  Gabriel R. Bitran,et al.  Tradeoff Curves, Targeting and Balancing in Manufacturing Queueing Networks , 1989, Oper. Res..

[12]  Clifford C. Petersen,et al.  Computational Experience with Variants of the Balas Algorithm Applied to the Selection of R&D Projects , 1967 .

[13]  Yuji Nakagawa,et al.  Modular Approach for Solving Nonlinear Knapsack Problems , 1999 .

[14]  Nikolaos V. Sahinidis,et al.  Global optimization of mixed-integer nonlinear programs: A theoretical and computational study , 2004, Math. Program..

[15]  Dorit S. Hochbaum,et al.  A nonlinear Knapsack problem , 1995, Oper. Res. Lett..

[16]  J. N. K. Rao,et al.  Some problems of optimal allocation in sample surveys involving inequality constraints , 1979 .

[17]  Alok Gupta,et al.  Pricing and Allocation for Quality-Differentiated Online Services , 2005, Manag. Sci..

[18]  Ross J. W. James,et al.  Enumeration Methods for Repeatedly Solving Multidimensional Knapsack Sub-Problems , 2005, IEICE Trans. Inf. Syst..

[19]  Jiun Wei Horng Voltage mode universal biquadratic filters using CCIIs , 2004 .

[20]  Dimitris Bertsimas,et al.  An Approximate Dynamic Programming Approach to Multidimensional Knapsack Problems , 2002, Manag. Sci..

[21]  David W. Coit,et al.  Adaptive Penalty Methods for Genetic Optimization of Constrained Combinatorial Problems , 1996, INFORMS J. Comput..

[22]  Harvey M. Salkin,et al.  A branch and search algorithm for a class of nonlinear knapsack problems , 1983 .

[23]  M. W. Cooper A Survey of Methods for Pure Nonlinear Integer Programming , 1981 .

[24]  Hasan Pirkul,et al.  Efficient algorithms for solving multiconstraint zero-one knapsack problems to optimality , 1985, Math. Program..

[25]  R. Nauss The 0–1 knapsack problem with multiple choice constraints☆ , 1978 .

[26]  Bala Shetty,et al.  The Nonlinear Resource Allocation Problem , 1995, Oper. Res..

[27]  Hiroshi Kamada,et al.  Surrogate Constraints Algorithm for Reliability Optimization Problems with Multiple Constraints , 1981, IEEE Transactions on Reliability.

[28]  Hans Kellerer,et al.  Knapsack problems , 2004 .

[29]  Martin Dyer Calculating surrogate constraints , 1980, Math. Program..

[30]  Arnaud Fréville,et al.  An Efficient Preprocessing Procedure for the Multidimensional 0- 1 Knapsack Problem , 1994, Discret. Appl. Math..

[31]  J. Onishi,et al.  Solving the Redundancy Allocation Problem With a Mix of Components Using the Improved Surrogate Constraint Method , 2007, IEEE Transactions on Reliability.

[32]  S. Martello,et al.  Dynamic Programming and Strong Bounds for the 0-1 Knapsack Problem , 1999 .

[33]  Gérard Cornuéjols,et al.  An algorithmic framework for convex mixed integer nonlinear programs , 2008, Discret. Optim..

[34]  Hans Ziegler,et al.  Solving certain singly constrained convex optimization problems in production planning , 1982, Oper. Res. Lett..

[35]  Ronald D. Armstrong,et al.  A computational study of a multiple-choice knapsack algorithm , 1983, TOMS.

[36]  Arnaud Fréville,et al.  The multidimensional 0-1 knapsack problem: An overview , 2004, Eur. J. Oper. Res..

[37]  Samir Elhedhli,et al.  Efficient Production-Distribution System Design , 2005, Manag. Sci..

[38]  Emanuel Melachrinoudis,et al.  A mixed integer knapsack model for allocating funds to highway safety improvements , 2002 .

[39]  M. E. Dyer,et al.  A branch and bound algorithm for solving the multiple-choice knapsack problem , 1984 .

[40]  Vasek Chvátal,et al.  Hard Knapsack Problems , 1980, Oper. Res..

[41]  Ted K. Ralphs,et al.  Parallel Branch and Cut , 2006 .

[42]  Hasan Pirkul,et al.  Surrogate Constraints in Integer Programming , 1991 .

[43]  Egon Balas,et al.  An Algorithm for Large Zero-One Knapsack Problems , 1980, Oper. Res..

[44]  Tadao Takaoka A New Measure of Disorder in Sorting - Entropy , 1998, CATS.

[45]  Leslie E. Trotter,et al.  Parallel branch-and-cut for set partitioning , 1999 .

[46]  Prabhakant Sinha,et al.  Integer Programming Models for Sales Resource Allocation , 1980 .

[47]  Thomas L. Morin,et al.  A hybrid approach to discrete mathematical programming , 2015, Math. Program..

[48]  Thorsten Koch,et al.  Branching rules revisited , 2005, Oper. Res. Lett..

[49]  N. Sancho,et al.  A hybrid ‘dynamic programming/depth-first search’ algorithm, with an application to redundancy allocation , 2001 .

[50]  Yuji Nakagawa,et al.  An improved surrogate constraints method for separable nonlinear integer programming , 2003 .

[51]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[52]  Günther R. Raidl,et al.  The Multidimensional Knapsack Problem: Structure and Algorithms , 2010, INFORMS J. Comput..

[53]  John E. Beasley,et al.  A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.

[54]  Yi-Chih Hsieh,et al.  A linear approximation for redundant reliability problems with multiple component choices , 2003 .

[55]  Bennett Fox,et al.  Discrete Optimization Via Marginal Analysis , 1966 .

[56]  Prabhakant Sinha,et al.  The Multiple-Choice Knapsack Problem , 1979, Oper. Res..

[57]  Fred W. Glover,et al.  Cutting and Surrogate Constraint Analysis for Improved Multidimensional Knapsack Solutions , 2002, Ann. Oper. Res..

[58]  Yuji Nakagawa,et al.  Surrogate Constraints Algorithm for Reliability Optimization Problems with Two Constraints , 1981, IEEE Transactions on Reliability.