Regularization in Image Non-Rigid Registration: I. Trade-off between Smoothness and Intensity Similarity

In this report, we first propose a new classification of non-rigid registratio- n algorithms into three main categories: in one hand, the geometric algorithms- , and in the other hand, intensity based methods that we split here into standard intensity-based (SIB) and pair-and-smooth (P&S) algorithms. We then focus on the subset of SIB and P&S algorithms that are competitive, i.e. that use a regularization energy which is minimized together with the intensity similarity energy. In SIB algorithms, these two energies are combined in a weighted sum, and thus the trade-off between them is direct. P&S algorithms alternates their respective minimization, leading to the characteristic two steps: pairing of points, and smoothing. We theoretically compare the behavior of SIB and P&S algorithms, and more precisely, we explain why in practice the smoothness of the transforms estimated by SIB algorithms is non-uniform, thus difficult to control, while P&S algorithms estimate a motion that is more uniformly smooth. We give an example illustrating this behavior. Very few P&S algorithms minimize a global energy. We therefore propose a new image registration energy whose minimization leads to a \PAS algorithm. This energy is general, and can use any existing similarity or regularization energy. Its behavior is also compared to the previous SIB and \PAS algorithms. This new energy allows uniformly smooth solutions, as for our previous P&S algorithm, while preventing registration of non-informative, noisy areas, as for SIB algorithms.

[1]  M I Miller,et al.  Mathematical textbook of deformable neuroanatomies. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Nicholas Ayache,et al.  Extension of the ICP Algorithm to Nonrigid Intensity-Based Registration of 3D Volumes , 1997, Comput. Vis. Image Underst..

[3]  David Rey,et al.  Symmetrization of the Non-rigid Registration Problem Using Inversion-Invariant Energies: Application to Multiple Sclerosis , 2000, MICCAI.

[4]  Michael I. Miller,et al.  Volumetric transformation of brain anatomy , 1997, IEEE Transactions on Medical Imaging.

[5]  Pierre Hellier,et al.  Coupling dense and landmark-based approaches for nonrigid registration , 2003, IEEE Transactions on Medical Imaging.

[6]  M. Strintzis,et al.  Maximum likelihood motion estimation in ultrasound image sequences , 1997, IEEE Signal Processing Letters.

[7]  C. Broit Optimal registration of deformed images , 1981 .

[8]  Gary E. Christensen,et al.  Consistent Linear-Elastic Transformations for Image Matching , 1999, IPMI.

[9]  Benoit M. Dawant,et al.  Brain Atlas Deformation in the Presence of Large Space-occupying Tumors , 1999, MICCAI.

[10]  J. Mangin,et al.  Entropy minimization for automatic correction of intensity nonuniformity , 2000, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737).

[11]  D. Burr A dynamic model for image registration , 1981 .

[12]  Richard Szeliski,et al.  Spline-Based Image Registration , 1997, International Journal of Computer Vision.

[13]  G. Wahba Spline models for observational data , 1990 .

[14]  Nicholas Ayache,et al.  Three-dimensional multimodal brain warping using the Demons algorithm and adaptive intensity corrections , 2001, IEEE Transactions on Medical Imaging.

[15]  David J. Hawkes,et al.  Voxel similarity measures for 3-D serial MR brain image registration , 1999, IEEE Transactions on Medical Imaging.

[16]  Nicholas Ayache,et al.  Understanding the "Demon's Algorithm": 3D Non-rigid Registration by Gradient Descent , 1999, MICCAI.

[17]  Max A. Viergever,et al.  General multimodal elastic registration based on mutual information , 1998, Medical Imaging.

[18]  Fang Chen,et al.  Left ventricular motion reconstruction based on elastic vector splines , 2000, IEEE Transactions on Medical Imaging.

[19]  A. Khotanzad,et al.  A physics-based coordinate transformation for 3-D image matching , 1997, IEEE Transactions on Medical Imaging.

[20]  Simon R. Arridge,et al.  Non-linear Registration with the Variable Viscosity Fluid Algorithm , 1999, IPMI.

[21]  R. J. Althof,et al.  A rapid and automatic image registration algorithm with subpixel accuracy , 1997, IEEE Transactions on Medical Imaging.

[22]  Colin Studholme,et al.  An overlap invariant entropy measure of 3D medical image alignment , 1999, Pattern Recognit..

[23]  Nicholas Ayache,et al.  Tracking brain deformations in time sequences of 3D US images , 2003, Pattern Recognit. Lett..

[24]  Takeyoshi Dohi,et al.  Multimodality Deformable Registration of Pre- and Intraoperative Images for MRI-guided Brain Surgery , 1998, MICCAI.

[25]  David Suter,et al.  Elastic spline models for human cardiac motion estimation , 1997, Proceedings IEEE Nonrigid and Articulated Motion Workshop.

[26]  D. Louis Collins,et al.  Animal: Validation and Applications of Nonlinear Registration-Based Segmentation , 1997, Int. J. Pattern Recognit. Artif. Intell..

[27]  Amir A. Amini,et al.  Comparison of Land-Mark-Based and Curve-Based Thin-Plate Warps for Analysis of Left-Ventricular Motion from Tagged MRI , 1999, MICCAI.

[28]  Yali Amit,et al.  A Nonlinear Variational Problem for Image Matching , 1994, SIAM J. Sci. Comput..

[29]  X. Pennec,et al.  3D non-rigid registration by gradient descent on a Gaussian-windowed similarity measure using convolutions , 2000, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737).

[30]  Jean-Francois Mangin,et al.  Multisubject Non-rigid Registration of Brain MRI Using Intensity and Geometric Features , 2001, MICCAI.

[31]  Paul Suetens,et al.  Non-rigid Multimodal Image Registration Using Mutual Information , 1998, MICCAI.

[32]  Benoit M. Dawant,et al.  Retrospective intermodality registration techniques for images of the head: surface-based versus volume-based , 1999, IEEE Transactions on Medical Imaging.

[33]  A. Toga,et al.  A SURFACE-BASED TECHNIQUE FOR WARPING 3-DIMENSIONAL IMAGES OF THE BRAIN , 2000 .

[34]  D. Louis Collins,et al.  Non-linear Cerebral Registration with Sulcal Constraints , 1998, MICCAI.

[35]  B M Dawant,et al.  Brain atlas deformation in the presence of small and large space-occupying tumors. , 2002, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[36]  Charles R. Meyer,et al.  Multi-variate Mutual Information for Registration , 1999, MICCAI.

[37]  Juan Ruiz-Alzola,et al.  Nonrigid Registration of 3D Scalar, Vector and Tensor Medical Data , 2000, MICCAI.

[38]  Stephen M. Smith,et al.  A Non-Rigid Registration Algorithm for Dynamic Breast MR Images , 1999, Artif. Intell..

[39]  Paul A. Viola,et al.  Multi-modal volume registration by maximization of mutual information , 1996, Medical Image Anal..

[40]  Jean-Philippe Thirion,et al.  Image matching as a diffusion process: an analogy with Maxwell's demons , 1998, Medical Image Anal..

[41]  Karl Rohr,et al.  Elastic registration of medical images using radial basis functions with compact support , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[42]  Sébastien Ourselin,et al.  Reconstructing a 3D structure from serial histological sections , 2001, Image Vis. Comput..

[43]  Chuck Meyer,et al.  Evaluation of Control Point Selection in Automatic, Mutual Information Driven, 3D Warping , 1998, MICCAI.

[44]  Sven Kreiborg,et al.  Surface-bounded growth modeling applied to human mandibles , 2000, IEEE Transactions on Medical Imaging.

[45]  Karl J. Friston,et al.  Image registration using a symmetric prior—in three dimensions , 1999, Human brain mapping.

[46]  Ruzena Bajcsy,et al.  Multiresolution elastic matching , 1989, Comput. Vis. Graph. Image Process..

[47]  J. Ashburner,et al.  Nonlinear spatial normalization using basis functions , 1999, Human brain mapping.

[48]  Ivan Bricault,et al.  Registration of real and CT-derived virtual bronchoscopic images to assist transbronchial biopsy , 1998, IEEE Transactions on Medical Imaging.

[49]  James C. Gee,et al.  On matching brain volumes , 1999, Pattern Recognit..

[50]  H. Chui,et al.  A feature registration framework using mixture models , 2000, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737).

[51]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[52]  Simon R. Arridge,et al.  A survey of hierarchical non-linear medical image registration , 1999, Pattern Recognit..

[53]  Ron Kikinis,et al.  Registration of 3D Intraoperative MR Images of the Brain Using a Finite Element Biomechanical Model , 2001, IEEE Trans. Medical Imaging.

[54]  Xavier Pennec,et al.  Feature-Based Registration of Medical Images: Estimation and Validation of the Pose Accuracy , 1998, MICCAI.

[55]  Nicholas Ayache,et al.  Unifying maximum likelihood approaches in medical image registration , 2000, Int. J. Imaging Syst. Technol..

[56]  Nicholas Ayache,et al.  Tracking Brain Deformations in Time-Sequences of 3D US Images , 2001, IPMI.

[57]  Fabrice Heitz,et al.  3D deformable image matching using multiscale minimization of global energy functions , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[58]  Morten Bro-Nielsen,et al.  Fast Fluid Registration of Medical Images , 1996, VBC.

[59]  Nicholas Ayache,et al.  Directional Anisotropic Diffusion Applied to Segmentation of Vessels in 3D Images , 1997, Scale-Space.

[60]  Lin Xie,et al.  Deformable registration of digital images , 1998, Journal of Computer Science and Technology.

[61]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  Charles R. Meyer,et al.  Probabilistic Brain Atlas Construction: Thin-Plate Spline Warping via Maximization of Mutual Information , 1999, MICCAI.

[63]  Patrick Pérez,et al.  Medical Image Registration with Robust Multigrid Techniques , 1999, MICCAI.

[64]  Christos Davatzikos,et al.  A Biomechanical Model of Soft Tissue Deformation, with Applications to Non-rigid Registration of Brain Images with Tumor Pathology , 1998, MICCAI.

[65]  Karl Rohr,et al.  Approximating Thin-Plate Splines for Elastic Registration: Integration of Landmark Errors and Orientation Attributes , 1999, IPMI.

[66]  N. Ayache,et al.  Fast Non Rigid Matching by Gradient Descent: Study and Improvements of the "Demons" Algorithm , 1999 .

[67]  Maria Gabrani,et al.  Surface-based matching using elastic transformations , 1999, Pattern Recognit..

[68]  Nicholas Ayache,et al.  A General Scheme for Automatically Building 3D Morphometric Anatomical Atlases: application to a Sku , 1995 .

[69]  David J. Hawkes,et al.  Bayesian Estimation of Intra-operative Deformation for Image-Guided Surgery Using 3-D Ultrasound , 2000, MICCAI.

[70]  Max A. Viergever,et al.  Interpolation Artefacts in Mutual Information-Based Image Registration , 2000, Comput. Vis. Image Underst..

[71]  Karl Zilles,et al.  A New Approach to Fast Elastic Alignment with Applications to Human Brain , 1996, VBC.

[72]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[73]  James S. Duncan,et al.  Rigid point feature registration using mutual information , 1999, Medical Image Anal..